«J, Aperture
e Neuro

Articles describing Code

Chopra S, Labache L, Dhamala E, Orchard ER, Holmes A. A Practical Guide for
Generating Reproducible and Programmatic Neuroimaging Visualizations. Aperture
Neuro. 2023;3:1-20. d0i:10.52294/001¢.85104

A Practical Guide for Generating Reproducible and Programmatic

Neuroimaging Visualizations

Sidhant Chopra', Loic Labache’, Elvisha Dhamala®, Edwina R Orchard®, Avram Holmes'

1 Department of Psychology, Yale University, 2 Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, 3 Yale Child Study Center,
Yale University, 4 Department of Psychiatry, Brain Health Institute, Rutgers University

Keywords: Neuroimaging visualization, Reproducibility, Programmatic figures, Open Science, Python, Brain Visualization

h ://doi.org/10.52294/001 104

Aperture Neuro
Vol. 3, 2023

Neuroimaging visualizations form the centerpiece of the interpretation and
communication of scientific results, and are a cornerstone for data quality control. Often,
these images and figures are produced by manually changing settings on Graphical User
Interfaces (GUIs). There now exist many well-documented code-based brain visualization
tools that allow users to use code to programmatically generate publication-ready figures
directly within programming environments such as R, Python and MATLAB. Here, we
provide a rationale for the wide-spread adoption of code-generated brain visualizations
by highlighting corresponding advantages in replicability, flexibility, and integration over
GUI based tools. We then provide a practical guide outlining the steps required to
generate these code-based brain visualizations. We also present a comprehensive table of
tools currently available for programmatic brain visualizations and provide examples of
visualizations and associated code as a point of reference (https://sidchop.shinyapps.io
braincode_selector/). Finally, we provide a web-app that generates simple code-templates
as starting points for these visualizations (https://sidchop.shinyapps.io/braincode/).

1. INTRODUCTION

The visualization of neuroimaging data is one of the pri-
mary ways in which we evaluate data quality, interpret re-
sults, and communicate findings. These visualizations are
commonly produced using graphical user interface (GUI)
-based tools where individual images are opened and,
within each instance, display settings are manually
changed until the desired output is reached. In large part,
the choice to use GUI-based software has been driven by
a perception of convenience, flexibility, and accessibility.
However, there now exist code-based software packages
that are well-documented and do not require high-level and
comprehensive knowledge of programming, making them
accessible to the neuroimaging community. These tools are
flexible and can generate reproducible, high-quality, and
can make publication-ready brain visualizations in only a
few lines of code, especially within the R, Python and MAT-
LAB environments. Here, we first discuss the rationale for
the widespread adoption of code-generated visualizations
by highlighting major advantages in replicability, flexibil-
ity, and integration. We then provide a practical guide out-
lining the steps required to make code-based brain visu-
alizations and provide a web-app
(https://sidchop.shinyapps.io/braincode/; see Section 4)
that can generate simple code-templates as starting points
for these visualizations. We also present a comprehensive
table of tools currently available for programmatic brain vi-
sualizations (Table 1) and provide instructive examples of

visualizations and associated code as a point of reference
(Figure 2-3). Finally, we outline some limitations and gaps
in the current functionality of code-based tools. The focus
of this guide is on human brain magnetic resonance imag-
ing (MRI) data, but many of the principles discussed and
tools provided will equally apply to visualizing data from
other organs and imaging modalities such as EEG, MEG,
PET and CT.

2. BENEFITS OF LEARNING TO GENERATE
CODE-BASED BRAIN VISUALIZATIONS

2.1. REPLICABILITY

In recent years, there have been multiple large-scale efforts
empirically demonstrating the lack of reproducibility of
findings using neuroimaging data.! One common solution
proposed for achieving robust and reliable discoveries has
been to encourage scientific output that can be transpar-
ently evaluated and independently replicated. In practice,
this typically entails openly sharing detailed methods, ma-
terials, code, and data. While there is a trend towards shar-
ing code related to neuroimaging analyses, the sharing of
code used to generate figures such as brain renderings and
spatial maps has been relatively neglected. This gap in re-
producibility is partly driven by the fact that brain figures
are often created using a manual process that involves tin-
kering with sliders, buttons, and overlays on a GUI, con-
cluding with a screenshot and sometimes beautification
in image processing software like Illustrator, Photoshop


https://doi.org/10.52294/001c.85104
https://sidchop.shinyapps.io/braincode_selector/
https://sidchop.shinyapps.io/braincode_selector/
https://sidchop.shinyapps.io/braincode/
https://sidchop.shinyapps.io/braincode/
https://doi.org/10.52294/001c.85104

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

Table 1. Examples of code-based neuroimaging visualizations tools that can be accessed directly within R,

MATLAB and Python environments.

Voxel Vertex ROI Edge Streamlines

R

ANTsR +2 +2 +2 1

brainconn +1

brainR +26,7 +67

ciftitools +23 +2.3 +42,3

fsbrain A 434 46,34

ggseg +14

neurobase +2

oro.nifti +2
Python

ANTsPy 2 42 +2

brainiak +2

Brainplotlib +1,11 +%1,11

Brainspace/surfplot +34,6,7.8 +%3,4,6,7,8

DIPY +2 +5,9

ENIGMA TOOLBOX +1,34,6,8

FSLeyes +2,3,4 +2,34 +2,3,4 +2,5

ggseg +14

graphpype 41,1011

MMVT +2.4 +2,4 +1,10,11

MNE +24 +4 +4

mrivis +2

NaNSlice +2

netneur | +4 ++3

netplotbrain +12 +1,11

nilearn +2 +23 +2.3 +1,11

iwidget 4234 +234 +5

Pycortex +811,12 +4811,12 #+4811,12

pySurfer +4 14

surfice +2,3,4 +2,34 +2,3,4,6 +1,4,6 +4,5,6

Visbrain +1,2,36 +1,2,36 +1,2,36 +1,2,36
MATLAB

BrainNetViewer +234,6,13 +2.34,6,13 +1,10

Brainspace +34,6,7,8 +*%3,4,6,7,8

Brainstorm 2 46 4346

bspmview +213 +213

CandlabCore +2,10,13 +2,10,13

ECoG/fMRI Vis toolbox +10 +%10

ENIGMA TOOLBOX +1,10

FieldTrip +2 +10

Lead-DBS +2 +2.34

mni2fs +2,3

mrtools 2 412 124,12

| rfaceROIBoundar: +4.10 +%4,10
Vistasoft +2 +2 +2 410

Note: The tools listed contain functionality required to generate (at least close-to) publication-ready neuroimaging figures via user-entered code within R, MATLAB and Python envi-

ronments. An interactive version of this table can be found here: https://sidchop.shinya

Aperture Neuro

s.io/braincode_selector/. This list does not include cross-platform general purpose visual-


https://antsx.github.io/ANTsR/articles/ANTsR.html
https://github.com/sidchop/brainconn
https://github.com/muschellij2/brainR
https://github.com/mandymejia/ciftiTools
https://github.com/dfsp-spirit/fsbrain
https://github.com/ggseg/ggseg
https://github.com/muschellij2/neurobase
https://github.com/muschellij2/oro.nifti
https://github.com/ANTsX/ANTsPy
https://github.com/brainiak/brainiak
https://github.com/feilong/brainplotlib
https://github.com/MICA-MNI/BrainSpace
https://github.com/danjgale/surfplot
https://github.com/dipy/dipy
https://github.com/MICA-MNI/ENIGMA
https://github.com/pauldmccarthy/fsleyes
https://github.com/ggseg/python-ggseg
https://neuropycon.github.io/graphpype/
https://github.com/pelednoam/mmvt
https://github.com/mne-tools/mne-python
https://github.com/raamana/mrivis
https://github.com/spinicist/nanslice
https://github.com/netneurolab/netneurotools
https://github.com/wiheto/netplotbrain
https://github.com/nilearn/nilearn
https://github.com/nipy/niwidgets
https://github.com/gallantlab/pycortex
https://pysurfer.github.io/
https://github.com/neurolabusc/surf-ice
https://github.com/EtienneCmb/visbrain
https://www.nitrc.org/projects/bnv/
https://github.com/MICA-MNI/BrainSpace
https://github.com/brainstorm-tools/brainstorm3
https://www.bobspunt.com/software/bspmview/
https://github.com/canlab/CanlabCore
https://github.com/Immiora/matlab-ecog-visualization
https://github.com/MICA-MNI/ENIGMA
https://www.fieldtriptoolbox.org/
https://www.lead-dbs.org/
https://github.com/dprice80/mni2fs
https://github.com/justingardner/mrTools
https://github.com/StuartJO/plotSurfaceROIBoundary
http://web.stanford.edu/group/vista/cgi-bin/wiki/index.php/Visualization
https://sidchop.shinyapps.io/braincode_selector/

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

ization software. 1 = .txt/.csv (scalar, vector, matrix as input); 2 = .nii/.nii.gz (nifti as input); 3 = .cii/.gii (cifti or gifti files as input, includes any subtypes e.g. dlabel, dtseries, .surf); 4
= FreeSurfer formats as input, including .mgz, .annot, .label, .curv, .wm etc); 5 = .trk/.tck (tractograms as input); 6 = .obj (3D object format); 7 = .ply (3D polygon format); 8 = .vtk (Vi-
sualization Toolkit format); 9 = .fib (Legacy vtk format); 10 = .mat (MATLAB format); 11 = .npy/.npz (Python numpy format); 12 = .off (object file format); * = Cortex only.

or Inkscape. Such a process makes neuroimaging visual-
izations inherently difficult, if not impossible to replicate,
even by the authors themselves.

The code used for data visualization should reflect a core
feature of open science. Given that brain figures regularly
form the centerpiece of interpretation within papers, con-
ference presentations, or news reports, making sure they
can be reliably regenerated is crucial for knowledge gener-
ation and dissemination. By writing and sharing code used
to generate brain visualizations, a direct and tractable link
is established between the underlying data and the corre-
sponding scientific figure. While this code doesn’t neces-
sarily reflect the validity or accuracy of the scientific find-
ing, it allows for reproducibility, instilling transparency and
robustness, while demonstrating a desire to further scien-
tific knowledge. Some even consider publishing figures that
cannot be replicated as closer to advertising, rather than
science.2

Notably, some GUI-based tools have historically offered
command-line access to generate replicable visualizations
(e.g., FreeView, FSLeyes, surfice), making their use poten-
tially equally replicable to purely code-based tools. Use of
these specialized command-line interfaces can provide a
useful middle ground for those who have little experience
with coding environments. Nonetheless, these interfaces
often still have a learning curve, but can lack other advan-
tages, such as iteration, provided by programming environ-
ment (see Sections 2.2 and 2.3). Likewise, other GUI-based
tools offer replicability in the form of automatically gener-
ated batch scripts (text files containing lines of specialized
commands that can be re-executed) or in-built terminals,
which can be idiosyncratic and may lack documentation to
make them easily usable or replicable by those not familiar
with the specific software.

2.2. FLEXIBILITY AND SCALABILITY

Being able to exactly replicate a figures via code has marked
advantages beyond open science practices. In particular,
the ability to reprogram inputs (such as statistical maps)
and settings (such as color schemes, thresholds, and visual
orientations) can streamline the entire scientific workflow.
Changing inputs and settings via code allows for the easy
production of multiple figures, such as those resulting from
multiple analyses that require similar visualizations. A sim-
ple for-loop or plotting function with altered inputs and/or
settings-of-interest can be a powerful method for exploring
visualization options or rapidly creating multi-panel fig-
ures. Likewise, an arduous request from a reviewer or col-
laborator to alter the image processing or analysis becomes
less of a burden when the associated figures can be re-
generated with a few lines of code, as opposed to re-past-
ing and re-illustrating them manually. Having a code-base
with modifiable inputs can mean that the generation of vi-
sualizations requires less time, energy and effort than im-
age and instance specific GUI-based generation. This also

makes it easier to generate consistent figures across subse-
quent projects. Critically, the gains of writing code for fig-
ures are cumulative, and in addition to improving program-
ming skills, one can build a code-base for figure generation
that can be reused and shared throughout a scientific ca-
reer.

Precise controls via code over visualization settings,
such as color schemes, legend placement and camera an-
gles, provides much greater flexibility over visualizations.
Nonetheless, part of the appeal of GUI-based tools is that
the presets for such settings can provide a useful starting
point and reduce the decision burden on novice users. How-
ever, similar presets are often available in the form of de-
fault settings across most code-based packages, negating
the need for the user to manually enter each and every
choice required for creating an image. Most code-based
tools also come with documentation, with R-packages on
the CRAN or Neuroconductor repositories requiring de-
tailed guidance. Recent tools have started to include de-
tailed beginner-friendly documentation in GitHub repos-
itories, or even entire papers (e.g., Pham, Muschelli, &
Mejia, 2022; Mowinckel & Vidal-Pineiro, 2020; Huntenburg
et at., 2017; Schéfer & Ecker, 2020) that provide examples
of figures that can be used as starting points or templates
for new users (also see Section 4). As the popularity of
code-sharing for figure increases, there will be a cornucopia
of templates that can be used as the basis for new figures.

While brain visualizations are often thought of as the
end results of analyses, they also form a vital part of quality
control for imaging data. Tools to automatically detect
artefacts, de-noise the data and generate derivatives are
becoming more robust, but are not yet at the stage where
visualizing the data is no longer necessary. Nonetheless,
when working with large datasets such as Human Connec-
tome Project* or UK BioBank,’ it is simply not feasible
to use traditional GUI-based tools to visually examine the
data. The time it takes to open a single file and achieve
the desired visualization settings vastly compounds when
working with large datasets. Knowing how to programmat-
ically generate brain visualizations can allow for iteration
of visualization code over each image of a large datasets
making quality checks of each data processing step achiev-
able. The visual outputs of each iteration can be complied
into accessible documents that can be easily scrolled, with
more advanced usage allowing for the creation of interac-
tive HTML reports (see Section 3.5), similar to those cre-
ated by standardized data processing tools like finriprep.6
This increased capacity to conduct visual quality control on
larger datasets will improve the identification of processing
errors and result in more reliable and valid findings.

2.3. INTEGRATIVE AND INTERACTIVE REPORTING

Often in neuroimaging studies, programming languages
such as R, Python and MATLAB are used for statistical
analysis and generating non-brain figures, but the brain fig-

Aperture Neuro 3



A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

ures are outsourced to separate GUI-based tools such as
FSLeyes, Freeview or ITK-snap. Increasingly popular soft-
ware such as R Markdown, Quarto and Jupyter Notebook al-
low for the mixing of prose and code in a single script,
resulting in fully reproducible and publication ready pa-
pers. By using code-based tools available within the pre-
ferred environment, brain visualizations can be directly in-
tegrated and embedded within a paper or report. For
instance, a fully reproducible version of the current paper
can be found on GitHub. Some journals that publish neu-
roimaging studies are moving towards reproducible manu-
scripts, including reproducible figures (e.g. eLife, Aperture
Neuro), with other journals like F1000Research and Giga-
Science even allowing on-demand re-running of code linked
to the associated article via cloud-based platforms like Code
Ocean (Code Ocean, 2021).

Neuroimaging data are often spatially 3D and can have
multiple time points, adding a 4th dimension (e.g., func-
tional imaging data). Thus, communicating findings or
evaluating quality using static 2D slices is challenging, and
may not be the best representation of the data, or the as-
sociated interpretations. While well-curated 3D renderings
can help with spatial localisation,’8 in the end, static im-
ages can only provide an incomplete representation of the
data, and they force researchers to choose the “best” angle
or slice to show, which often involves compromising one re-
sult to emphasize another. An added advantage of some of
the code-based tools is the generation of ‘rich’ media like
interactive figures or animations, that allow users to zoom,
rotate and scroll through slices. Interacting with a figure
in this way can improve scientific communication of find-
ings. Linking to or even embedding these videos or inter-
active figures in papers can greatly enhance the communi-
cation of findings and make papers more engaging for the
reader. Such rich brain visualizations lend themselves to
being shared on science communication mediums beyond
academic papers—such as presentations, websites and so-
cial media—all of which can promote the communication of
research with peers and reach larger audiences.? This last
point is becoming increasingly salient as social media has
become a core medium for spreading discoveries via science
communication to the public,10-12 to the research commu-
nity,1314 and even a primary avenue for employment op-
portunities for early-career researchers.!%16 Overall, public
engagement is a cornerstone of science, and the images we
create are at the center of the process.

3. GENERATING CODE-BASED VISUALIZATIONS

In the following sections we outline the primary steps re-
quired when generating programmatic and reproducible
human brain visualizations (Figure 1), and provide tools
and heuristics to guide this process.

3.1. SELECTING A PROGRAMMING LANGUAGE

The first step in generating code-based visualization can be
selecting the coding language. Three of the most popular
languages are R, Python and MATLAB, all of which have

many options for generating brain visualizations (see Table
1). This decision can be made based on what language the
user has prior experience with, or if one of these languages
was used for the analysis part of a project. There can be
advantages in using the same language for visualizations
and analyses, as switching between separate environments,
or to a GUI-based visualization software, can be a cum-
bersome deviation from the scientific workflow. This can
make debugging errors more difficult, as the user must reg-
ularly switch programs to visually examine the results of
any modifications or adjustments to prior analyses. Using
the brain visualization tools that already exist within a cho-
sen programming environment can provide instant visual
feedback on the impact of modifications to processing or
analysis.

Alternatively, the choice of programming language may
be dictated by visualization and data-type required. For in-
stance, visualizing streamlines from tractography may not
be currently available in the R environment (Table 1), and
therefore requires the use of Python or MATLAB. Other
constraints may include limited access to proprietary soft-
ware like MATLAB, which would necessitate the use of
open-source options such as R, Python or Octave.

3.2. IDENTIFY A VISUALIZATION TYPE

Neuroimaging data and its derivatives can be visualized
in multiple forms, that have different associated file-types
and visualization requirements (see Section 3.3). A brief de-
scription of more popular visualization types is provided
below:

Voxel. In neuroimaging, voxels are used to represent the
intensity values of a 3D scan, such as an MRI or CT scan.
The voxels can be rendered in different colors to indicate
tissue types or other features of interest. For example, in
functional MRI scans, voxels can be colored based on their
level of activation, to show which areas of the brain are
more active during a specific task. These visualizations are
often displayed as either slices in axial, sagittal or coronal
planes (Fig2A-B; Fig3A-B) or a 3D rendering of the whole
brain. Statistical values are displayed as overlays on tem-
plate anatomical images, that follow a common stereotaxic
coordinate system (e.g., MNI152), or on individual-specific
anatomical images.

Vertex. In neuroimaging, vertices are used to create a
mesh representation of brain structures, such as the cere-
bral cortex or a subcortical regions. Each vertex has a set
of coordinates that specify its location in 3D space and is
connected to other vertices to form triangles, which make
up the mesh. Vertices can be used to create a 3D visual-
ization of the brain surface and color-coded based on dif-
ferent attributes such as sulcal depth, thickness, or func-
tional activation. These visualizations are often displayed
as 3D rendering of each hemisphere from medial and lateral
views (Fig2C,G-H; Fig3C-D). Statistical values are displayed
as overlays on template surfaces which follow a common
stereotaxic coordinate system and fixed number of vertices
(e.g., fsaverage; Fig2C,G; Fig3C-D), or on individual-spe-
cific surfaces that have been reconstructed using an
anatomical image (Fig2H).

Aperture Neuro 4


https://github.com/sidchop/RepoNeuroVis

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

Select your programming language

1

Identify your type of visualization

H pgthon

\/i\ll AB

A
Ko

Voxel

Streamline

Edge

Region Vertex

Identify your data and file-type

Select a package/library
® N

~

Vector MRI-specific file type examples
(e.g. .txt, .csv)
R ﬁ ‘ Region | Value File-type Content
python MATLAD ROI1 | 4.1
Package Library Toolbox NIFTI (.nil) Voxel
ROI 2 3.8
ggseg surfplot Brainspace
CIFTI (.cii) Vertex and/or
brainconn nilearn FieldTrip ROl x 14 Voxel
GIFTI (.gii) Vertex
fsbrain pySurfer Lead-DBS
Matrix
— — e (e.g. .txt, .csv) FreeSurfer (e.g. Vertex, Voxel,
ciftitools rainstorm ro11l 1161213 ‘mgz) Labels
ROI2/ 8 1 1/5 |6
- ROI3| 9|3 |11 Tractography Streamlines
See Table 1 for full list. ROIX 0415 1 (e.g. tck, .trk)
5 D At
O O O
\ J \ LSS SR //

Generate visualization

5

Share visualization and code

6

DD

See Section 4 for template generator.

GitHub

"o
¢ 9
oge

Figure 1. Primary steps to generating programmatic and reproducible human brain visualizations. Each step is
outlined in Each step is outlined in the corresponding sub-section of Section 3.

Regions of Interest (ROI). In neuroimaging, ROIs are
used to identify specific brain structures or areas that are
relevant to the research question. ROIs can be defined using
various methods, such as manual tracing, atlas-based par-
cellation, or functional activation patterns. Visualizing
ROIs can be done by grouping and assigning the same sta-
tistical value or color to sets of voxels or vertices (Fig2B-C;
Fig3B-C), or can be done through polygons. Polygonal brain
visualizations are simple 2D or 3D shapes which graphically
represent the brain or specific structures, but do not carry
any additional information on spatial coordinates and only
roughly estimate the shape of the brain and its structures.
Each region of 2D (Fig 2D,F) and 3D (Fig 2E; Fig3E) polygon
visualizations is filled in with colors indicating a region la-
bel or a statistical value.

Edge. In the context of neuroimaging, an edge often rep-
resents a physical or statistical connection between two
brain regions, which can be visualised as a straight or
curved line connecting two nodes (brain regions) in a net-

Aperture Neuro

work. One common way data is organized for edge-level vi-
sualization is a matrix, often called a ‘connectivity’ or ‘ad-
jacency’ matrix, which indexes the presence and strength
of the connections between pairs of brain regions. Visu-
alitaion tools often convert these matrices into network
graphs, where the vertices represent brain regions and the
edges represent the connections between those regions,
and can be displayed in a variety of ways, such as overlayed
on a 2D or 3D representation of the brain (Fig2I; Fig3F),
with edges represented as straight lines connecting the ver-
tices. Often, visual properties of edges and nodes can also
be adjusted to convey information, such as sized or color-
coded based the strength or number of connections.
Streamlines. While similar to edges, streamlines are
specifically used to represent the white matter fibers and
are usually an output of conducting tractography to diffu-
sion-weighted MRI. Streamlines are typically visualized as
curved 3D lines that connect different points of the brain
and can be used to create 3D visualizations of specific white


https://apertureneuro.org/article/85104-a-practical-guide-for-generating-reproducible-and-programmatic-neuroimaging-visualizations/attachment/177042.png

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

n T
£7

Network

e Cont
Default
DorsAttn
Limbic

SalVentatin

SomMot
Vis

weight
- - 100

Figure 2. Examples of brain imaging visualizations made using R.

A) Voxel-level statistical map thresholded and overlaid over a T1-weighted template image, with a single axial slice shown. Made using the the ortho?2 function from the neurobase package. B) A voxel-level cortical parcellation overlaid on a individual T1-weighted
image, shown in 9-slice axial orientation. Made using the overlay function from the neurobase package. C) A CIFTI format surface ROI atlas with a corresponding statistic assigned to each region, with both hemispheres displayed on a inflated template surface in
lateral view. Made using the view_x1ifti_surface from the ciftiTools package. D) A coronal cross-sectional rendering of subcortical structures where a value has been assigned to each region. Made using the aseg atlas from the ggseg package. E) A 3D
rendering of 9 bilateral subcortical regions where a value has been assigned to each region. Made using the dseg atlas from the ggseg3d package. F) Medial and lateral views of a ROI atlas displayed on inflated cortical surface where a value has been assigned to each
region. Made using the glasser atlas from the ggsegGlasser package, which was plotted using ggseg. G) Lateral view of a CIFTI format vertex-level data displayed on a inflated template surface. Made using the view_xifti_surface function from the
ciftiTools package. H) Medial and lateral views of vertex-level data displayed on a individuals white matter surface. Made using the vis.subject.morph.standard function from the f Sbrain package. I) A weighted and undirected graph plotted on top,

left and front views of a schematic outline of a brain in MNI coordinate space. Made using the brainconn function from the brainconn package. All code used to compile this figure, as well as the contents of each panel are provided in an accompanying online
repository.

Aperture Neuro


https://apertureneuro.org/article/85104-a-practical-guide-for-generating-reproducible-and-programmatic-neuroimaging-visualizations/attachment/177043.png
https://github.com/sidchop/RepoNeuroVis
https://github.com/sidchop/RepoNeuroVis

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

C

Figure 3. Examples of brain imaging visualizations made using Python.

A) Voxel-based statistical map thresholded and overlaid over a T1-weighted template data, with a single axial slice shown. Made using the pLotting.plot_stat_map function from nilearn. B) Voxel-level cortical parcellation overlaid on T1-weighted MRI
data shown in four axial slices. Made using pLotting.plot_roi function from nilearn. C) Medial and lateral views of a cortex-wide ROI atlas, displayed on an inflated template surface where a statistical value has been randomly assigned to each ROI. Made
using PLot function from surfplot. D) Lateral and medial views of vertex-level data displayed in a 3D rendering on an individual’s white matter surface. Made using plotting.view_surf function in from nilearn. 3D rendering of 16 subcortical structures from the
the Deiskan-Killiany atlas, where a statistical value has been randomly assigned to each region. Made using the plot_subcortical function from the ENIGMA TOOLBOX. A weighted and undirected graph plotted on front, right, and top views of a schematic
outline of a brain in MNI coordinate space. Made using plotting.plot_connectome function in nilearn. All code used to generate the contents of each panel, and compile this figure are provided in an accompanying online repository.

Aperture Neuro


https://apertureneuro.org/article/85104-a-practical-guide-for-generating-reproducible-and-programmatic-neuroimaging-visualizations/attachment/177044.png
https://github.com/sidchop/RepoNeuroVis

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

matter tracts, or all streamlines between regions. They can
be color-coded based on the direction of the fibers or prop-
erties of the tract, such as myelination. These visualiza-
tions can be overlaid on voxel- or vertex-level anatomical
brain representations to provide an anatomical reference
point.

The following two figures provide examples of voxel, ver-
tex, ROI and edge-level visualizations generated within R
(Figure 2) and Python (Figure 3) using open source, well
documented and beginner-friendly packages. These are not
an exhaustive representation of packages available for vi-
sualizing brain data in R and Python (see Table 1). Rather,
the figures aim to give the reader a sense of the many op-
tions available, and are an entry point to choosing the type
of brain visualization needed (also see Section 4). All code
used to compile the figures, as well as the contents of each
panel are provided in the accompanying online repository.

3.3. IDENTIFY INPUT FILE-FORMATS

Neuroimaging data and its derivatives come in many dif-
ferent file formats, and code-based visualization packages
have specific formats they are designed to work with. Table
1 provides a key, listing which data-type can be used as
inputs for each package. Some of the most common MRI
file-formats used as inputs for visualizations are briefly de-
scribed below:

Plain text format. The simplest input formats are a
scalar, vector, and matrix, which represent a single data-
point, one-dimensional array of data (e.g., a single column
or row), and a two-dimensional array of data (e.g. multiple
columns or rows), respectively. These data are often stored
in plain text formats such as .txt, .csv, and .tsv and can
be generated by neuroimaging analyses software such as
SPM, FSL or FreeSurfer. These files can also contain rows
and columns of region names and/or spatial coordinates.
All programming languages have functions to read these
plain text formats into the coding environment. These for-
mats are often used in region-level visualizations, where
groups of voxels or vertices share the same value or color
(Fig2B-F; Fig3B-E), or in edge-level visualizations, where a
matrix is used to identify regions are connected by an edge
(Fig2F; Fig3F).

NIfTI. NIfTI (.nii) files store 3D or 4D image data that
are often a matrix of voxel intensities or a series of 3D ma-
trices for 4D data such as fMRI and dMRI. The image data
is stored as a 3D matrix of voxel intensities, and the header
contains additional information, such as the image dimen-
sions and voxel size. Additional information such as the
subjects demographics and scanner parameters can also be
stored in the header in the form of metadata.

GIfTI. GIFTI (.gii) is an extension of the NIFTI format,
and stores data in a surface-based format represented as a
set of vertices, edges, and faces that define a surface mesh.
The format also includes support for storing data such as
curvature, thickness, and functional activity maps on the
surface mesh. Often .gii file names will have a pre-indica-
tor of what information the file contains, such as .surf.gii,
which would contain only vertices, edges and faces to de-
fine a surface mesh. Or .func.gii files that contain data

values for every vertex, which are essentially data arrays
whose indices correspond to a surface file and need a cor-
responding surface file to know where in the brain to as-
sign the data values. GIFTI files can also store multiple sur-
faces in a single file, and can include information about the
topology of the surfaces, such as the number of vertices,
edges, and faces. Additional metadata can also be stored in
the header.

CIfTL. CIFTI (.cii) files can store data from both surface-
based and volume-based neuroimaging analyses, combin-
ing aspects of NIFTI and GIFTI files. For surface-based data,
the file contains vertex coordinates, and data values at each
vertex. For volume-based data, the file contains a 3D matrix
of voxel intensities. Often this datatype is used to represent
the cortex as vertices, and subcortical, brain stem and cere-
bellar structures as voxels. CIFTI files can be divided into
three main types: .dtseries (store time-series data, such as
fMRI data), .dtscalar (store scalar data, such as thickness
or curvature maps), and .dtlabel (store label data, such
as parcellations of the brain). These files can also include
fields with additional metadata such as surface and volume
registration information.

FreeSurfer. FreeSurfer is a commonly used image pro-
cessing and analysis software that comes with a variety of
proprietary formats to store outputs. The primary format is
.mgh and its compressed version .mgz, which like .ni1i files,
genrally stores voxel-level data. Vertex-level data is stored
in multiple formats such as .pial, .white, and .inflated.
FreeSurfer also uses .label files to store a list of vertices
and associated labels for each brain structure, and .annot
files FreeSurfer store annotation information such as ver-
tices, labels and color information that can be overlaid on
the surface reconstruction.

Tractography. Commonly used tractography file formats
include .trk and .tck developed by the TrackVis and MRtrix
software packages, respectively. Both formats store coordi-
nates for streamlines as a series of 3D points, with each
point represented by its X, y, and z coordinates, as well
as a tract header with the number of points in the tract,
the properties of the tract (e.g., mean diffusivity, fractional
anisotropy), as well as the starting and ending indices of
streamlines.

Critically, many of these datatypes are interchangeable,
and can be converted between each other. There are many
ways to convert between format, for instance, the Con-
nectome Workbench,!7 and related R-packages like cifti-
tools!8 allow for conversion between NIFTI, CIFTI and
GIFTI formats. FreeSurfer functions such as mri_convert,
the NiBabell? library in Python and the fsbrain20 in R, all
allow for conversion between the propriety formats and
open-source NIFTI, CIFTI and GIFTI formats. Therefore, if
a given file format to is not compatible with a visualization
package, library, or toolbox, the user can convert data into
the desired format. Although, it is important to visualize
and validate data after converting between data-structures,
to ensure the data have not been misinterpreted, and also
to be aware that unintended consequences of mapping be-
tween 2D surface and 3D volume formats can arise.2!

Aperture Neuro 8


https://github.com/sidchop/RepoNeuroVis

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

3.4. SELECT A PACKAGE, LIBRARY OR TOOLBOX

The previous steps of deciding a programming environ-
ment, visualization type and input data-type will help users
decide which package, library or toolbox is the right choice.
Table 1 provides a list of tools in R, Python and MATLAB,
classified by whether they are able to generate voxel, ver-
tex, ROI, edge or streamline based visualizations. While
each tool may contain the ability to generate code-based
visualizations, some tools are more beginner-friendly and
better documented than others. Usually, these tools are
specifically designed for brain data visualization, as op-
posed to tools that are designed for brain data analysis but
also provide some limited visualization functionality. Some
examples of well documented and beginner-friendly tools
are provided via a code template generator (see Section 4).

An important consideration when selecting a tool is
whether it can generate publication-ready plots. Publica-
tion-ready plots are high resolution, labelled, contain all
color bars and legends, and require no additional manual
image manipulation. While all tools listed in Table 1 con-
tain some of these features, some tools enable more precise
control over publication-ready features such as legend
placement, color bar placement, annotations, labeling, and
multi-panel figures. These tools usually produce visualiza-
tion that rely on mainstream general purpose plotting en-
gines such as ggplot in R and matplotlib in Python. This
allows users to leverage many additional features to make
their brain visualizations publication ready. For example,
the ggseg and ggsed3d packages22 in R generate plots com-
patible with the widely-used grammar of graphics (i.e., gg-
plot2) and plotly engines, respectively. Similarly, the
Nilearn library in python allows plots to be generated using
matplotlib or plotly engines. We note that many of the oth-
ers listed in Table 1 also rely on common plotting engines
to generate visualizations.

3.5. GENERATE VISUALIZATION

Popular integrated development environments (IDE) such
as RStudio, Visual Studio and Spyder, come with the inbuilt
ability to display and update figures as the code is executed.
The resulting visualization can be shared or embedded in
papers in multiple different ways, with differing levels of
replicability (see Section 2.3) and visual quality. One com-
mon way to share visualizations is to export it as a image
raster format such as .png, .tiff or .jpeg, where images ap-
pear as a grid of pixels and each pixel in the grid contains
information about the color and intensity of that specific
point in the image. These formats are resolution depen-
dent, and will become pixelated and difficult to parse when
enlarged. Whereas vector formats, such a .svg, .eps and
.pdf can be scaled larger or smaller without losing quality.
While all coding environments provide ways to export vi-
sualizations into raster formats, exporting using vector for-
mats, while visually superior, depends on the specific tool.
Generally, only visualization tools that rely on mainstream
general purpose plotting engines such as ggplot in R and
matplotlib in Python allow for images to be exported as true
vector formats.

Increasingly popular software such as R Markdown,
Quarto, Jupyter Notebook, and Google Collab can create dy-
namic documents that combine code, text, and visualiza-
tions in a single file. This makes it easier to document
workflows and share complete analyses, enhancing both
collaboration and reproducibility. Including the code used
to generate figures and other results alongside well format-
ted text-based explanations (see Section 2.3), enables the
user and others to replicate work accurately. These tools
also offer a wide range of output formats for documents,
including PDF, HTML, Word and LaTeX. This versatility
enables the generation of polished reports, presentations,
manuscripts, or even interactive dashboards, all from a sin-
gle source file. Currently, while R Markdown is primarily
associated with R and Google Collab with Python, Jupyter
Notebook and Quarto support a broader range of program-
ming languages, including Python, Julia, R, and others.

3.6. SHARE VISUALIZATION CODE

Images that are generated using code can then be inserted
into outputs such as a manuscript and the associated code
can be included in supplementary materials. While this is
the simplest way to share visualizations and code, it may
not be as accessible as uploading code to dedicated code-
sharing and version control platforms such as GitHub or
GitLab. These services are currently widely used and allow
for code to maintain formatting, version control and search
functions.

Alternate options are widely used general-purpose re-
search data repositories, such as Open Science Framework,
Zenodo or FigShare, that enable researchers to publish and
share their datasets, software, code and other research out-
puts at no cost. One advantage of these platforms is that
they can assign a Digital Object Identifier (DOI) number
to shared materials, making them independently citable
and enhancing visibility since DOIs are indexed by various
repositories and search engines. Some platforms even pro-
vide usage metrics, enabling users to gather insight on how
often code and materials are accessed, cited or reused by
others, which can be valuable information for evaluating
the impact and reach of work.

An important consideration when both writing and shar-
ing code for figure generation is the long-term preservation
of code and resistance to software collapse. While a dis-
cussion of code and software preservation is outside the
scope of the current paper, readers can refer to
[NO_PRINTED FORM], and initiatives such as Software
Heritage which aim to preserve and archive all the software
source code available worldwide, ensuring that valuable
software source code is not lost over time.

In addition to the platform used, how accessible the code
is to both the user and others depends on how clearly the
code is written, formatted and commented. While guidance
on proper organization of the neuroimaging visualization
code is beyond the scope of this guide, we point readers to
other practical guides on this topic.24.25

While sharing code is necessary for replicability, it is of-
ten not sufficient, as the underlying data source being vi-
sualized may be needed for the code to function correctly.

Aperture Neuro 9


https://github.com/
https://about.gitlab.com/
https://osf.io/
https://zenodo.org/
https://figshare.com/
https://www.softwareheritage.org/
https://www.softwareheritage.org/

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

Region Vertex

Select brain atlas you would like to plot:

schaefer17_400 -

Generate random data to plot on brain!

Select color palette for overlay:

Viridis be

Line thickness

01 [094) 15

01 02 038 05 066 08 09 108 122 136 15

Select hemisphere/s to display:
O Both O Right ® Left

i R code template:

' ## You need the following package(s) to generate the plot:

library(dplyr)
Uibrary(ggseg)
library(ggsegSchaefer)

## Load in atlas data provided by ggseg package

atlas

. ## Select atlas region names and hemisphere so that we can add the values

i we want to plot:

region = atlas$region
hemi = atlasshemi
data = distinct(na.omit(data.frame(region,hemi))) #remove NA and duplicate regions

## Plot atlas:
ggplot() + geom_brain(

## Load in the values you want to plot (one value for each region the the atlas),

ensuring the values are ordered the same as the region and hemisphere as per the above “data’:
datasvalue = sample(length(data$region)) # random data.

atlas_data = left_join(atlas,data)) #merge your values with the atlas data

= as_tibble(schaeferl7_400)

atlas = atlas_data,

mapping = aes(fill=value),

position = position_brain(position = 'horizontal'),
hemi = "left’,

color ='black’,

size 0.94,
show. legend = F) +

theme_void() +
scale_fill_viridis_c(option='8")

i ## There are many more visualization options available, type 7ggseg::geom_brain to

i ## learn more and also check out: https://ggseg.github.io/ggseg/ and please cite

i ## the associated with ggseg: https://journals.sagepub.con/doi/10.1177/2515245928928009
i ## If you are interested in vertex-based ROI visualisation, check out ciftitools:
™ https://github.com/mandymejia/ciftiTools

Figure 4. Interface for BrainCode web-app which generates simple code-based templates for brain visualizations.

(1) Select a programming environment (R or Python). (2) Select a visualization type (Voxel, Region, Vertex and Edge). There is also a Frequent Asked Questions tab to aid users. (3)
Manually adjust limited visualization settings and examine how it reactively changes the visualization (4) and code template (5). (5) Copy the code template into selected program-
ming environment, change file-paths to data and explore other visualization settings offered by the functions.

While many of the same sharing platforms listed above
can also host source data alongside code, there now exist
specialized platforms, such as OpenNeuro and NeuroVault,
that allow sharing of neuroimaging specific datasets, such
as those containing NIFTI and CIFTI images. If the source
data for visualizations cannot be shared, synthetic data can
also be generated and provided alongside the code be pro-
vided.26

4. BRAIN-CODE: A WEB-APP FOR GENERATING
CODE TEMPLATES FOR BRAIN VISUALIZATIONS

To assist researchers transition into generating code-based
brain visualizations, we have developed a web-app
(https://sidchop.shinyapps.io/braincode/) that interactively
generates of code-templates for beginner friendly libraries/
packages in R and Python. In the web-app, users can select

Aperture Neuro

R or Python as their coding environment, and choose be-
tween voxel, ROI, vertex, and edge-level visualizations.
They can then manually adjust a limited set of visualization
setting, such as color-scales and view, and are provided
with a reactive code-template that can be copied and then
used within their respective programming environment.
The provided code templates require users to customize the
code, such as alter file-paths. The available settings have
been purposefully limited to allow users to explore and
fine-tune additional visualization options within their own
programming environment. The code-template also con-
tains links and prompts to more detailed documentation,
alternate packages/libraries and tutorials which allow for
more complex and publication-ready brain visualizations.
Users can download bundled version of the web-apps via a
GitHub repository.

10


https://openneuro.org/
https://neurovault.org/
https://sidchop.shinyapps.io/braincode/
https://github.com/sidchop/RepoNeuroVis
https://apertureneuro.org/article/85104-a-practical-guide-for-generating-reproducible-and-programmatic-neuroimaging-visualizations/attachment/177045.png
https://sidchop.shinyapps.io/braincode/

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

5. LIMITATIONS AND FUNCTIONALITY GAPS

While many code-based tools are well documented and do
not require a strong knowledge of programming, there can
still be a steep learning curve for new users, compared to
using a GUL. This is especially true for the purpose of a pub-
lication-ready figure, where fine adjustments to visual fea-
tures such as legend placement, font size and multi-panel
figure positioning may be needed. While most code-based
tools offer some control over these finer steps, there are
differences between them in feature availability and usabil-
ity, with tools that use established graphic engines such as
ggplot2, matplotlib and plotly providing the most versatile
and well-documented features for visual auxiliary. Relat-
edly, while some interactive image viewers can be opened
within an integrated development environment like R-Stu-
dio (e.g., Muschelli, 2016), for quick and interactive viewing
of single GUI tools can be faster and more practical.

Often cerebellar and brain-stem regions are not well rep-
resented in software (e.g., Figure 2-3), potentially mirroring
the cortico-centric sentiment that has prevailed in human
neuroimaging research.2’ Likewise, custom non-cortical at-
lases such as non-standard subcortical atlas schemes are
not yet straightforward, and usually require multiple func-
tions and packages to visualize. Visualizing these struc-
tures often requires chaining together multiple GUI-based
tools (see Madan, 2015). Alternatively users can convert
neuroimaging specific file-formats into domain general vi-

sualization or polygon formats, such as .vtk, .ply or .obj,
which can be read, manipulated and visualized using gen-
eral purpose code-based tools. Examples of such tools in-
clude PyVista and Mayavi in Python and rayshader and
plotly in R. Moreover, some neuroimaging derived
datatypes, such as streamlines resulting from DWI-based
tractography, are still not well represented in code-based
visualization tools and future development should focus
on enhancing visualization capabilities using these data-
types.

As can be seen in Table 1 (https://sidchop.shinyapps.io
braincode_selector/), there are usually multiple packages
within each programming environment which can visualize
each data type. While this provides choice for advanced
users, it can also lead to confusion for novice users who
may not be familiar with the nuanced differences between
tools. While the process we have outlined, and the table and
web-app we have provided will help users decide the ideal
package, future work should continue to consolidate brain
visualization methods into unified beginner-friendly code-
based tools which rely on established and well-documented
graphic engines and can plot multiple data types.

Submitted: November 07, 2022 CST, Accepted: July 02, 2023
CST

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License
(CCBY-4.0). View this license’s legal deed at http://creativecommons.org/licenses/by/4.0 and legal code at http://creativecom-

mons.org/licenses/by/4.0/legalcode for more information.

Aperture Neuro 1 1


https://sidchop.shinyapps.io/braincode_selector/
https://sidchop.shinyapps.io/braincode_selector/

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

REFERENCES

1. Poldrack RA, Baker CI, Durnez J, et al. Scanning
the horizon: Towards transparent and reproducible
neuroimaging research. Nat Rev Neurosci.
2017;18(2):115-126. doi:10.1038/nrn.2016.167

2. Steel G. Publishing Research without Data Is Simply
Advertising, Not Science. Open Knowledge
Foundation; 2013. https://blog.okfn.org/2013/09/03/p
ublishing-research-without-data-is-simply-advertisin

g-not-science/

3. Muschelli J, Gherman A, Fortin JP, et al.
Neuroconductor: An r platform for medical imaging
analysis. Biostatistics. 2018;20(2):218-239. doi:10.109
3/biostatistics/kxx068

4. Van Essen DC, Smith SM, Barch DM, Behrens TE],
Yacoub E, Ugurbil K. The WU-minn human
connectome project: An overview. Neurolmage.

2013;80:62-79. doi:10.1016/j.neuroimage.2013.05.04
1

5. Sudlow C, Gallacher J, Allen N, et al. UK biobank:
An open access resource for identifying the causes of
a wide range of complex diseases of middle and old
age. PLoS Med. 2015;12(3):e1001779. doi:10.1371/jou
rnal.pmed.1001779

6. Esteban O, Markiewicz CJ, Blair RW, et al.
fMRIPrep: A robust preprocessing pipeline for
functional MRI. Nat Methods. 2018;16(1):111-116. do
i:10.1038/s41592-018-0235-4

7. Madan CR. Creating 3D visualizations of MRI data:
A brief guide. F1I000Res. 2015;4:466. doi:10.12688/f10
0O0research.6838.1

8. Pernet C, Madan CR. Data visualization for
inference in tomographic brain imaging. Published
online 2019.

9.LiY, Xie Y. Is a picture worth a thousand words?
An empirical study of image content and social media
engagement. Journal of Marketing Research.
2019;57(1):1-19. doi:10.1177/0022243719881113

10. Mueller-Herbst JM, Xenos MA, Scheufele DA,
Brossard D. Saw it on facebook: The role of social
media in facilitating science issue awareness. Social
Media + Society. 2020;6(2):205630512093041. doi:10.1
177/2056305120930412

11. Smith CN, Seitz HH. Correcting misinformation
about neuroscience via social media. Science
Communication. 2019;41(6):790-819. doi:10.1177/107
5547019890073

12. Huber B, Barnidge M, Gil de Zaniga H, Liu J.
Fostering public trust in science: The role of social
media. Public Underst Sci. 2019;28(7):759-777. doi:1
0.1177/0963662519869097

13. Luc JGY, Archer MA, Arora RC, et al. Does
tweeting improve citations? One-year results from
the TSSMN prospective randomized trial. The Annals
of Thoracic Surgery. 2021;111(1):296-300. doi:10.101
6/j.athoracsur.2020.04.065

14. Quintana DS. Twitter for Scientists. eBook edition.
Zenodo; 2020. doi:10.5281/zenodo.3707741

15. Baker M. Social media: A network boost. Nature.
2015;518(7538):263-265. doi:10.1038/nj7538-263a

16. Lee JSM. How to use twitter to further your
research career. Nature. Published online February 8,
2019. doi:10.1038/d41586-019-00535-w

17. Marcus DS, Harwell ], Olsen T, et al. Informatics
and data mining tools and strategies for the human
connectome project. Front Neuroinform. 2011;5:4. do

i:10.3389/fninf.2011.00004

18. Pham DD, Muschelli ], Mejia AF. ciftiTools: A
package for reading, writing, visualizing, and
manipulating CIFTI files in r. NeuroImage.

2022;250:118877. doi:10.1016/j.neuroimage.2022.118
8717

19. Brett M, Markiewicz CJ, Hanke M, et al. Nipy/
Nibabel: 5.0.0. Zenodo; 2023. doi:10.5281/ZENODO.7
516526

20. Schéfer T, Ecker C. fsbrain: An r package for the
visualization of structural neuroimaging data.
Published online September 20, 2020. doi:10.1101/20
20.09.18.302935

21. Ciantar KG, Farrugia C, Galdi P, Scerri K, Xu T,
Bajada CJ. Geometric effects of volume-to-surface
mapping of fMRI data. Brain Struct Funct.
2022;227(7):2457-2464. doi:10.1007/s00429-022-025
36-4

22. Mowinckel AM, Vidal-Pifieiro D. Visualization of
Brain Statistics With R Packages ggseg and ggseg3d.
Advances in Methods and Practices in Psychological
Science. 2020;3(4):466-483. doi:10.1177/25152459209
28009

23. Hinsen K. Dealing with software collapse. Comput
Sci Eng. 2019;21(3):104-108. doi:10.1109/mcse.2019.2

900945

Aperture Neuro

12


https://doi.org/10.1038/nrn.2016.167
https://blog.okfn.org/2013/09/03/publishing-research-without-data-is-simply-advertising-not-science/
https://blog.okfn.org/2013/09/03/publishing-research-without-data-is-simply-advertising-not-science/
https://blog.okfn.org/2013/09/03/publishing-research-without-data-is-simply-advertising-not-science/
https://doi.org/10.1093/biostatistics/kxx068
https://doi.org/10.1093/biostatistics/kxx068
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.12688/f1000research.6838.1
https://doi.org/10.12688/f1000research.6838.1
https://doi.org/10.1177/0022243719881113
https://doi.org/10.1177/2056305120930412
https://doi.org/10.1177/2056305120930412
https://doi.org/10.1177/1075547019890073
https://doi.org/10.1177/1075547019890073
https://doi.org/10.1177/0963662519869097
https://doi.org/10.1177/0963662519869097
https://doi.org/10.1016/j.athoracsur.2020.04.065
https://doi.org/10.1016/j.athoracsur.2020.04.065
https://doi.org/10.5281/zenodo.3707741
https://doi.org/10.1038/nj7538-263a
https://doi.org/10.1038/d41586-019-00535-w
https://doi.org/10.3389/fninf.2011.00004
https://doi.org/10.3389/fninf.2011.00004
https://doi.org/10.1016/j.neuroimage.2022.118877
https://doi.org/10.1016/j.neuroimage.2022.118877
https://doi.org/10.5281/ZENODO.7516526
https://doi.org/10.5281/ZENODO.7516526
https://doi.org/10.1101/2020.09.18.302935
https://doi.org/10.1101/2020.09.18.302935
https://doi.org/10.1007/s00429-022-02536-4
https://doi.org/10.1007/s00429-022-02536-4
https://doi.org/10.1177/2515245920928009
https://doi.org/10.1177/2515245920928009
https://doi.org/10.1109/mcse.2019.2900945
https://doi.org/10.1109/mcse.2019.2900945

A Practical Guide for Generating Reproducible and Programmatic Neuroimaging Visualizations

24. Van Vliet M. Seven quick tips for analysis scripts
in neuroimaging. PLoS Comput Biol.
2020;16(3):e1007358. doi:10.1371/journal.pcbi.10073
58

25. Gorgolewski KJ, Poldrack RA. A practical guide for
improving transparency and reproducibility in
neuroimaging research. PLoS Biol.
2016;14(7):e1002506. doi:10.1371/journal.pbio.10025
06

26. Quintana DS. A synthetic dataset primer for the
biobehavioural sciences to promote reproducibility

and hypothesis generation. eLife. 2020;9:e53275. do
i:10.7554/elife.53275.sa2

27. Chin R, Chang SW, Holmes AJ. Beyond cortex: The
evolution of the human brain. Psychological Review.
Published online 2022.

Aperture Neuro

13


https://doi.org/10.1371/journal.pcbi.1007358
https://doi.org/10.1371/journal.pcbi.1007358
https://doi.org/10.1371/journal.pbio.1002506
https://doi.org/10.1371/journal.pbio.1002506
https://doi.org/10.7554/elife.53275.sa2
https://doi.org/10.7554/elife.53275.sa2

	1. Introduction
	2. Benefits of learning to generate code-based brain visualizations
	2.1. Replicability
	2.2. Flexibility and scalability
	2.3. Integrative and Interactive Reporting

	3. Generating Code-based Visualizations
	3.1. Selecting a programming language
	3.2. Identify a visualization type
	3.3. Identify input file-formats
	3.4. Select a package, library or toolbox
	3.5. Generate Visualization
	3.6. Share visualization code

	4. Brain-Code: A web-app for generating code templates for brain visualizations
	5. Limitations and Functionality Gaps
	References

