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Key Points 

 

Question: Are there group differences in whole brain functional connectivity between individuals 

with and without cocaine use disorder, and to what extent do these connectivity patterns relate to 

the spatial distribution of dopamine (D2/3) receptor densities?  

 

Findings: The presence of cocaine use disorder is associated with brain-wide functional 

connectivity alterations that are spatially coupled to the density of dopamine (D2/3) receptors.  

 

Meaning: A preferential and replicable link exists between the functional connectome correlates 

of cocaine use disorder and dopamine receptor densities across the brain. 
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Abstract 

 

Background: The biological mechanisms that contribute to cocaine and other substance use 

disorders involve an array of cortical and subcortical systems. Prior work on the development and 

maintenance of substance use has largely focused on cortico-striatal circuits, with relatively less 

attention on alterations within and across large-scale functional brain networks, and associated 

aspects of the dopamine system. The brain-wide pattern of temporal co-activation between 

distinct brain regions, referred to as the functional connectome, underpins individual differences 

in behavior. Critically, the functional connectome correlates of substance use and their specificity 

to dopamine receptor densities relative to other metabotropic receptors classes remains to be 

established.  

 

Methods: We comprehensively characterized brain-wide differences in functional connectivity 

across multiple scales, including individual connections, regions, and networks in participants with 

cocaine use disorder (CUD; n=69) and healthy matched controls (n=62), Further, we studied the 

relationship between the observed functional connectivity signatures of CUD and the spatial 

distribution of a broad range of normative neurotransmitter receptor and transporter bindings as 

assessed through 18 different normative positron emission tomography (PET) maps. 

 

Results: Our analyses identified a widespread profile of functional connectivity differences 

between individuals with CUD and matched healthy comparison participants (8.8% of total edges; 

8,185 edges; pFWE=0.025). We largely find lower connectivity preferentially linking default network 

and subcortical regions, and higher within-network connectivity in the default network in 

participants with CUD. Furthermore, we find consistent and replicable associations between 

signatures of CUD and normative spatial density of dopamine D2/3 receptors.  

 

Conclusions: Our analyses revealed a widespread profile of altered connectivity in individuals with 

CUD that extends across the functional connectome and implicates multiple circuits. This profile 

is robustly coupled with normative dopamine D2/3 receptors densities. Underscoring the 

translational potential of connectomic approaches for the study of in vivo brain functions, CUD-

linked aspects of brain function were spatially coupled to disorder relevant neurotransmitter 

systems. 
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Introduction 

 

The study and treatment of substance use disorders represents a complex, multifaceted 

challenge with far-reaching implications for individuals, their families, and our broader society. In 

particular, increasing prevalence of cocaine use disorder (CUD) substantially contributes to the 

rising overdose deaths in the United States (1). A fundamental question facing the field of 

addiction neuroscience concerns the extent to which substance use behaviors emerge through 

local patterns of activity or are instantiated across the broader large-scale networks of the human 

brain. While prior foundational work has established cortico-striatal-thalamic circuit disruption as 

a fundamental feature of substance use disorders (2), consistent with systems-level models of 

substance use disorders (3), striatal circuitry is deeply embedded within spatially distributed and 

functionally linked systems that span the cortical sheet. Whether alterations in functioning are 

isolated to specific circuits or diffusely distributed throughout large-scale network architecture 

remains largely unexplored. 

Cocaine preferentially targets the dopamine system, and both tonic and phasic dopamine 

neurotransmission have been shown to play a critical role in the onset and maintenance of 

substance use pathology (4). Here, for instance, reduced activity within the large-scale networks 

supporting attention and inhibitory control points to an imbalance between the core dopaminergic 

circuits that underlie subjective valuation and conditioned responding and those that support 

“higher-level” executive functioning. Moreover, the neuromodulatory impact of cocaine is not 

specific to the dopamine system, while primarily blocking the dopamine transporter and inhibiting 

its reuptake from the synaptic cleft, it also modulates serotonin and norepinephrine transporters 

(5). However, the extent to which the brain functional correlates of CUD may be coupled to the 

spatial distribution of dopaminergic processes, relative to other neurotransmitters, remains to be 

established. 

Here, we investigate the relationship between CUD, whole-brain functional connectivity, 

and neurotransmitter receptor densities. First, we used the network-based statistic (6) to derive 

whole-brain functional connectivity differences between individuals with CUD and controls. We 

then examine the association between the identified functional network and the spatial distribution 

of receptor densities, inferred from positron emission tomography (PET). In doing so, we 

demonstrate preferential correspondence between regional connectivity alterations related to 

CUD and the normative topography of dopamine D2/3 receptor densities across three independent 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.17.567591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

 

   

 

PET datasets. These data reliably establish that in CUD, extensive and brain-wide alterations in 

connectivity exist and are closely coupled with dopamine D2/3 receptor densities.  

 

Methods 

 

Participants 

The current study used data from the SUDMEX CUD imaging dataset (7). A total of n=131 

individuals (age range: 18-50), including 69 individuals with CUD (85.51% male) and 62 

demographically matched healthy comparison participants (79.03% male) were included in the 

present study. Notably, these data represent a diverse and non-European-centric population in 

Mexico City, Mexico. Participants with CUD had to have used for at least one year, with current 

average use of at least three times per week, with periods of continuous abstinence of less than 

one month during the last year. Additional participant inclusion criteria can be found in 

Supplementary Section 1. Participant behavioral characteristics and demographics can be 

found in Table 1. The reported study analyses procedures were approved by the Yale University 

Institutional Review Board IRB #1507016245. 

 

MRI acquisition and processing  

Intrinsic (resting state; fcMRI) functional imaging data were acquired using a 3T Phillips 

Ingenia MR scanner in Mexico City, Mexico. Field-standard processing and quality control 

procedures were implemented. To generate whole-brain functional connectivity matrices, we 

parceled each individual’s normalized scans into 400 cortical (8) and 32 subcortical (9) regions. 

(Fig. 1A). Further details can be found in in Supplement Section 3. 

 

Whole-brain functional connectome correlates of cocaine use disorder  

 Non-parametric ANCOVA models were used to analyze brain-wide functional connectivity 

differences between  individuals with CUD and matched controls, adjusting for age, sex, and 

education. The Network Based Statistic (NBS) was used to perform familywise error-corrected 

(FWE) inference at the level of connected components of edges (12,13), with the primary 

component-forming threshold, 𝜏, set to 𝑝  <   .05 and significance assessed at 𝑝𝐹𝑊𝐸 < 0.05. 

Further statistical details and results for 𝜏   =  0.01 and 𝜏 =  0.001 are reported in Supplementary 

Table 2 and Supplementary Section 4. 
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Associations between functional dysconnectivity and receptor densities  

In order to investigate the relationship between functional alterations identified in 

individuals with CUD and the topographic distributions of normative neurotransmitter expression 

in healthy participants, we used Spearman correlation to examined spatial associations between 

the number of significant connections and normative receptor bindings across each of the 432-

brain regions. These associations were first assessed using 17 unique spatial maps that index a 

specific receptor or transporter with the largest available sample size (10, 11). Multiple maps from 

independent datasets were available for some of the receptors and transporters, using either the 

same or unique tracer. If available, these additional maps were used to assess the stability and 

replicability of any statistically significant associations (𝑝 < 0.05). Permutation-based inference 

(10,000 permutations) using ‘spin-tests’ were used to assess significance, while accounting for 

spatial autocorrelation. Further statistical details and information regarding specific tracers are 

provided in Supplementary Section 1 and Table 2.  

 

Results 

 

Wide-spread connectivity alterations in cocaine use disorder 

We find a significant wide-spread pattern of both hyperconnectivity and hypoconnectivity 

associated with CUD, encompassing 8.8% of the total edges (8,185 edges; pFWE=0.025) linking 

432 brain regions (Fig. 1). The majority of significant edges (58.94%; 4,824 total edges) 

demonstrated hypoconnectivity in individuals with CUD. Here, the highest proportion of 

hypoconnected edges preferentially implicated the default network (Fig. 1D-E). After accounting 

for network size (see Supplemental Section 4), connections within striatum and thalamic 

regions, and between striatum and control networks were preferentially implicated in participants 

with CUD (Fig. 1D-E). At a regional level, precuneus posterior cingulate cortex, medial prefrontal 

cortex, and anterior caudate nucleus were among the areas most strongly implicated in the 

network of lower functional connectivity. 

When considering patterns of higher connectivity in the CUD group, hyperconnected 

edges accounted for 41.06% of the total significant edges (3,361 total edges). The total number 

of hyperconnected edges demonstrated preferential within-network connectivity of the default 

network, as well as between-network connectivity of striatum and ventral attention networks (Fig. 

1B-C). When normalizing for the total size of a given network, between-network hyperconnectivity 

of the striatum-somatomotor networks preferentially emerged. At a regional level, frontal 
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operculum, parietal operculum, extrastriate cortex, and anterior putamen, were among the areas 

most strongly implicated in the network of higher functional connectivity. 

 

Shared spatial topography links cocaine use disorder and D2/3 receptor densities. 

 Regional functional dysconnectivity was significantly correlated with D2/3 receptor density 

([11C]FLB 457, 𝜌=0.175 pspin=0.015). Associations with D2/3 receptors replicated across two 

additional normative PET maps ([18F]fallypride, 𝜌=0.168; pspin=0.022) and ([11C]FLB 457, 𝜌=0.192; 

pspin=0.007) (Fig. 2B-C), indicating robust and reliable relationships between D2/3 receptors 

density and CUD-related connectivity dysfunction (Fig. 2). To ensure that this association was 

not driven by large differences in tracer binding between cortical and subcortical regions, we 

replicated the D2/3 receptors association after excluding subcortical regions (Supplementary Fig. 

1). Associations with two serotonin results were also significant (5HT4 [11C]SB207145: ρ=0.143; 

pspin=0.032, and 5HT6 [11C]GSK215083: ρ=0.136; pspin=0.020) and reported in Supplementary 

Fig. 3, but did not have replication samples. No associations with other available neurotransmitter 

systems were detected (Supplementary Table 2). 
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Table 1: Demographic characterization of study sample (n=131). 

Group 
 
 

Cocaine Use Disorder 
(CUD) 

Healthy Comparison 
 

 
 

Participants (n, % Male) 69(85.51) 62(79.03) 𝜒2: 0.30 

p=0.583 
 

Age (mean±sd) 31.34±7.27 30.42±8.18 𝑡: -0.68;  
p=0.501 
 

Education (mean±sd) 2.83±1.27 3.52±1.39 χ2: 13.40 
p<0.020* 
 

Head Motion(mean±sd) 0.23±0.10 0.21±0.08 t: 1.63;  
p=0.105 

Three participants were excluded for missing age values. Seven participants were excluded for missing 

education values. Three participants (2 two HC, 1 CUD) missing sex values, male/female were the only 

available options. χ2, chi-square. Head motion calculated using mean framewise displacement (mm). * = 

significant group difference (𝑝 < 0.05).  
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Figure 1. Whole brain atypical functional connectivity in cocaine use disorder (CUD). A 

widespread network of affected connections exists between individuals with CUD and healthy 

matched controls, extending across the functional connectome. A) Schaefer 7-network and Tian 

subcortex parcellations (Scale II) from left to right: a indicates anterior; AMY, amygdala; CAU, 

caudate nucleus; d, dorsal; DA, dorsoanterior; Default, default network; DorsAttn, dorsal attention 

network; DP, dorsoposterior; FPN, frontoparietal network; GP, globus pallidus; HIP, 

hippocampus; l, lateral; Lim, cortical limbic network; m, medial; MTL, medial-temporal lobe 

(amygdala and hippocampus); NAc, nucleus accumbens; p, posterior; SomMot, somatomotor 

network; Stri, striatum; PUT, putamen; THA, thalamus. B) Images with a red color scale represent 

number of significant edges (degree) where individuals with CUD show hyperconnectivity. B) 

Images with a red color scale represent number of significant negative edges of NBS network 

where individuals with CUD show hypoconnectivity. C) Heatmap quantified using raw total edge 
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count (upper triangle) and normalized proportion of edges based upon network size (lower 

triangle) within the NBS component that fall within each of the canonical networks. The darker red 

indicates higher connectivity in CUD. D) Images with a blue color scale represent number of 

significant negative edges of NBS network where individuals with CUD show hypoconnectivity. 

E) Heatmap quantified using raw total edge count (upper triangle) and normalized proportion of 

edges based upon network size (lower triangle) within the NBS component that fall within each of 

the canonical networks. Darker blue color indicates lower connectivity in CUD.  
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Figure 2. Spatial overlap between whole-brain Network Based Statistic (NBS) network and D2/3 

receptor density in cocaine use disorder (CUD). A) Visualization of the total (positive and 

negative) number of significant edges at each region within the NBS component (Fig. 1B + 1D) 

where change in fcMRI was significantly correlated with the spatial D2/3 receptor density in a 

discovery sample (Sandiego 2015, pspin=0.019) and two replication samples (Jaworska 2020, 

pspin=0.030 and Smith 2017, pspin=0.013), respectively). B) D2/3 binding potential of PET samples 

for each receptor source, i.e., discovery sample and replication samples. Color scale normalized 

between -1.0 to 1.0 for cortex and subcortex separately. C) Each violin-box plot contains (from 

left to right) distribution of 10k spin-test null correlations between each edge of the NBS 

component and the spatial density of D2/3 receptors. Red dot indicates significant spearman’s 

correlation. * reflects statistical significance at the threshold pspin<0.05. Discovery Sample: 

Sandiego et al., (2015) (12); Replication 1: Jaworska et al., 2020 (13); Replication 2: Smith et al., 

2017 (14).  
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Discussion 

 

 Cocaine use disorder (CUD) emerges, in part, through the complex interactions of 

biological systems encompassing neurochemical cascades and associated functional interactions 

across both local circuits and broader large-scale networks. Establishing how these processes 

contribute to the onset and maintenance of substance use disorders requires a multi-scale 

approach, considering measures of in vivo brain function, as assessed through fcMRI, as well as 

neurotransmitter synthesis and transport assessed though PET imaging. In the present analyses, 

we find wide-spread alterations in intrinsic (“resting-state”) functional connectivity in CUD and by 

integrating these findings with PET data, we demonstrate the presence of shared spatial patterns 

linking D2/3 receptor densities with the functional connectome correlates of CUD.  

While prior work has revealed disruptions in cortico-striatal-thalamic circuitry that underlie 

varying stages in of substance use disorders (2), our findings support a more diffuse, brain-wide 

dysregulation in CUD, extending the beyond neural circuit-specific hypotheses. In addition to 

striatal and thalamic regions, we find alterations in large-scale cortical networks, including the 

default mode, control, somatomotor, and ventral attention networks, suggesting that dysfunction 

extends beyond atomically constrained cortico-striatal-thalamic circuitry. 

Critically, our findings demonstrate a reliable spatial correspondence between functional 

dysconnectivity in CUD and the dopaminergic system, extending across both cortical and 

subcortical regions. Cocaine acts by binding to the dopamine transporter, blocking the reuptake 

of dopamine from the synaptic cleft, as well as blocking the transporters for norepinephrine and 

serotonin (5). While our findings also implicate parts of the serotonin system, the most replicable 

and robust link was found with D2/3 receptor densities, suggesting that brain dysconnectivity 

across large-scale brain networks are preferentially coupled to dopaminergic pathways.  

Prior investigations have demonstrated distinguishable functional connectome profiles 

between CUD and other substance use disorders, such as opioid use disorder, suggesting that 

individual variability in large-scale connectomes may serve as a valuable predictor for treatment 

outcomes in CUD (15). While our findings demonstrate a robust pattern of functional alteration in 

CUD that is coupled with dopaminergic pathways, the extent to which the present findings may 

reflect a substance specific neurobiological profile or a general profile related to dopaminergic 

drugs of misuse (for instance, opiates, alcohol, and cocaine) remains to be determined.  

The current study, similar to many neuroimaging datasets of individuals with substance 

use disorders, is limited by its cross-sectional nature and longitudinal approaches may provide 
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further insight on whether neurobiological profiles reflect a vulnerability for illness, a direct 

consequence of substance use, or the biproduct of illness linked environmental impacts. 

Moreover, further investigations using concurrent PET and fMRI imaging in patient samples is 

needed to determine whether illness-related neurochemical alterations interact with brain 

function. The present sample is also characterized by a large proportion of male participants. Prior 

work has established the importance of sex differences in the brain-behavior features that 

characterize substance use disorders (16). Accordingly, data from more sex diverse individuals 

should be obtained in the future.  

 

Conclusions 

 

Together, these data establish correspondence across the functional networks implicated 

in CUD and the neurotransmitters that underlie its mechanism of action. This provides a 

foundation for future work disentangling the biological mechanisms that govern individual 

variances in the dopaminergic systems, functional brain organization, and substance use.   
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Section 1. Datasets 

 

We used neuroimaging data from the Mexican magnetic resonance imaging dataset of 

participants with CUD: SUDMEX CONN (1). SUDMEX is an open-source dataset consisting of 

75 (9 female) CUD participants and 62 (11 female) healthy matched controls. Participants were 

included based on the following inclusion criteria: (a) age between 18 and 50 years old; (b) 

right-handed; (c) cocaine dependency with an active consumption of at least twice a week in the 

last month. The exclusion criteria included: (a) current dependence (use and/or abuse) (by 

DSM-IV criteria) on other substances (alcohol or nicotine); (b) pregnant or breastfeeding; (c) 

neurological and psychiatric disorders; (d) with a severe systemic disease such as tumors or 

digestive system disease; and (e) magnetic resonance imaging (MRI) contraindications. All 

clinical and cognitive assessments were done by trained mental health psychologists and 

psychiatrists. 

 

Section 2. Exclusion criteria 

 

Individuals with mean framewise displacement (FD) > 0.55 mm were exclude form analysis. 

Eliminated 5 participants (one control, four CUD) participants due to artifacts and FD criteria (2). 
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Section 3. MR Pre-processing  

 

Briefly, raw images were first put through an automated quality control procedure (3, 4) 

(fMRIPrep 21.0.1; RRID:SCR_016216), which is based on Nipype 1.6.1 (5, 6) 

(RRID:SCR_002502). Data were then denoised using aComp-Cor and regressing out six-head 

motion parameters and mean global signal, followed by high-pass filtering (see below for 

details). Participants were excluded based on a previously established threshold on framewise 

displacement (FD; mean FD>0.55mm (2)), visual/manual quality control, and automated MRI 

quality control pipeline.  

 

Preprocessing of B0 inhomogeneity mappings 

A B0-nonuniformity map (or field map) was estimated based on two (or more) echo-planar 

imaging (EPI) references with topup. (7) (FSL 6.0.3:b862cdd5). 

 

Anatomical data preprocessing 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset. The T1-

weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (8) distributed with ANTs 2.3.3 (9) (RRID:SCR_004757), and used as 

T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a 

Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast  

(10) (FSL 6.0.3:b862cdd5, RRID:SCR_002823). Brain surfaces were reconstructed using recon-

all (11) (FreeSurfer 6.0.0, RRID:SCR_001847), and the brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle (12) (RRID:SCR_002438). Volume-

based spatial normalization to two standard spaces (MNI152NLin6Asym, 

MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration 

(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The 

following templates were selected for spatial normalization: FSL\u2019s MNI ICBM 152 non-

linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model (13) 

[RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], ICBM 152 Nonlinear Asymmetrical 

template version 2009c [(14) RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym]. 
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Functional data preprocessing 

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to 

the BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using mcflirt (15) (FSL 

6.0.3:b862cdd5). The estimated field map was then aligned with rigid-registration to the target 

EPI (echo-planar imaging) reference run. The field coefficients were mapped on to the reference 

EPI using the transform. BOLD runs were slice-time corrected to 0.972s (0.5 of slice acquisition 

range 0s-1.94s) using 3dTshift from AFNI (16) (RRID:SCR_005927). The BOLD reference was 

then co-registered to the T1w reference using bbregister (FreeSurfer) which implements 

boundary-based registration (17). Co-registration was configured with six degrees of freedom. 

Several confounding time-series were calculated based on the preprocessed BOLD: framewise 

displacement (FD), DVARS and three region-wise global signals. Global signal was extracted 

within the whole-brain masks. Additionally, a set of physiological regressors were extracted to 

allow for component-based noise correction (18) (CompCor). Principal components are 

estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 

filter with 128s cut-off) for the anatomical (aCompCor). For aCompCor, three probabilistic masks 

(CSF, WM, and combined CSF+WM) are generated in anatomical space. The implementation 

differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD 

space, the aCompCor masks are subtracted from a mask of pixels that likely contain a volume 

fraction of GM. This mask is obtained by dilating a GM mask extracted from the FreeSurfer aseg 

segmentation, and it ensures components are not extracted from voxels containing a minimal 

fraction of GM. Finally, these masks are resampled into BOLD space and binarized by 

thresholding at 0.99 (as in the original implementation). Components are also calculated 

separately within the WM and CSF masks. For each CompCor decomposition, the k 

components with the largest singular values are retained, such that the retained components 

time series are sufficient to explain 50 percent of variance across the nuisance mask. The 

remaining components are dropped from consideration. The BOLD time-series were resampled 

into standard space, generating a preprocessed BOLD run in MNI152NLin6Asym space. First, a 

reference volume and its skull-stripped version were generated using a custom methodology of 

fMRIPrep. Gridded (volumetric) resamplings were performed using antsApplyTransforms 

(ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels 
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(19). Finally, the aCompcor, cosine (highpass filtering), six head-motion and global signal 

regressors were regressed out of each subjects MNI-space voxel level images.   

 

Computing individual-level functional connectivity matrices  

To characterize the functional profile of CUD for each individual, we used previously validated 

Schaefer 400 cortical (20) and Tian 32-Scale II subcortical (21) atlases (Fig. 1A) to extract 

regional time series by taking the average of all voxels belonging to a given region. We then 

calculate the pairwise Pearson correlation between each of the 432 regions, to generate 93,096 

edge functional connectivity matrix. We employed the Yeo 7-network parcellation (22) to assign 

each cortical ROIs to a corresponding functional network. Subcortical regions were classified 

according to their broad-scale anatomy (21). 

 

Section 4. Methods  

 

Network Based Statistic 

The Network-Based Statistic (NBS) method tackles the challenge of multiple comparisons that 

arises in the context of whole brain connectome analyses. It accomplishes this by conducting 

statistical assessments at the level of interconnected components, which comprise groups of 

nodes linked together through a series of edges, in contrast to the conventional treatment of each 

individual edge in isolation. Specifically, at each edge (i.e., functional connectivity estimates 

between two regions), differences in functional connectivity between individuals with CUD and 

matched controls were assessed using an ANCOVA, adjusting for age, sex, and education, 

examining the main effect of the group. Using R-version-4.0.3, package NBR (R package version: 

0.1.5) (23), the Network Based Statistic (NBS) was used to perform family-wise error-corrected 

(FWE) inference at the level of connected-components of edges showing a common effect, with 

significance assessed at 𝑝𝐹𝑊𝐸 < 0.05. The NBS procedure involves setting a primary component-

forming threshold (𝜏), which is applied to both the observed data, and the permuted null data. The 

decision on where to set this threshold is arbitrary; a lower threshold can detect weaker 

differences over many edges, whereas a higher threshold tends to pinpoint stronger effects that 

might span fewer edges. We report results for 𝜏 < 0.05 here, and present results for and 𝜏 < 0.01, 

and 𝜏 < 0.001 in Supplementary Table 2 and Supplementary Figure 1. For both the observed 

and permuted null data, we noted the size (number of edges) in the connected components above 

this threshold. The size of the largest component from each permutation was employed to 
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construct a null distribution, and a corrected-value for each observed component was estimated 

as the proportion of null component sizes that was larger than the observed value (24). To 

comprehensively delineate brain-wide alterations in functional connectivity, we present the results 

at three different scales: (1) the level of individual connections (i.e., where edges are either under- 

or over-connected, or hypo- versus hyperconnectivity, respectively); (2) the level of individual 

brain regions, to identify specific brain areas which had a high number of significant connections 

(Fig. 1B, 1D); and (3) the level of large-scale functional brain networks, analyzed both within- and 

between-network. Here, we examined both as proportion of implicated edges (e.g., upper triangle 

Fig. 1C, 1E) and as proportions normalized by the size of the network (e.g., lower triangle Fig. 

1C, 1E). To determine whether the observed functional connectivity alterations showed any 

network-specificity, we calculated the proportion of significant edges that fell within each brain 

networks (e.g., Fig. 1C; upper triangle). Different brain networks have intrinsic differences in their 

size (number of regions), therefore we present both raw proportions and proportions normalized 

by the total number of possible network connections between each pair of networks (e.g. Fig. 1C 

lower triangle of matrix); the former identifies preferential involvement of a given network in an 

absolute sense while the latter accounts for differences in network size (i.e., the tendency for 

larger networks to be more likely to be implicated in a given NBS network).  

 

Neuromaps 

Receptor density data were obtained from Neuromaps (25). Neuromaps is an open source a 

toolbox for accessing and analyzing structural and functional brain maps, combined from open-

access data to compare brain maps. Each group-level parametric PET image was parcellated 

into 432 regions using the same atlases as the functional MRI data, and these regional values 

were z-scored within each map. To quantify the relationship between the various receptor 

distributions and CUD-related functional alterations, we first computed the degree of the detected 

NBS network (number of significant edges connecting each region). We then performed 

Spearman's correlation between regional degree and each receptor expression, using ‘spin tests’ 

for non-parametric inference that accounts for spatial autocorrelation (10,000 permutations; (26)). 

Subcortical regions were random shuffled within hemisphere at each permutation (27, 28). 

Specifically, to evaluate receptor density map comparison significance, a corresponding set of 

null models was generated by computing 10,000 null correlations between permuted degree from 

the detected NBS network (see Methods) and observed receptor densities. The p-value for each 

correlation’s significance is defined as the proportion of null models with correlation values greater 
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the original (observed) value. Binding potential refers to the ratio at which a radioligand binds to 

a specific receptor within the brain compared to its nonspecific binding.  

 

Supplementary Table 1: Results using alternate component forming threshold (τ=0.01).  

Threshold (τ) component number of edges pFWE 

0.01 1 2343 0.014 

 
 

Supplementary Table 2: Neurotransmitter receptor density spearman’s 𝜌 correlations after 10k 

spin test and random shuffling per hemisphere for subcortical regions, and pspin-values 

(uncorrected) for both 1) non-duplicate discovery set of receptor maps and 2) replication 

receptor maps. Raclopride D2/3 tracer was excluded due to inconsistent binding as previously 

reported using neuromaps (32).  

 
 

Discovery 
source 

space de
ns 

tracer rece
ptor 

neurotrans
mitter 

sam
ple 
size 

spearm
an’s 
rho (ρ) 

pspin 

value 

1 hillmer2016 MNI1
52 

1m
m 

flubatin
e 

A4B2 acetylcholin
e 

30 0.03 0.73902
6097 

2 naganawa2
020 

MNI1
52 

1m
m 

lsn317
2176 

M1 acetylcholin
e 

24 0.09178
5158 

0.12538
7461 

3 normandin2
015 

MNI1
52 

1m
m 

omar CB1 cannabinoi
d 

77 0.07733
9267 

0.29837
0163 

4 kaller2017 MNI1
52 

3m
m 

sch233
90 

D1 dopamine 13 0.09543
5821 

0.21597
8402 

5 sandiego20
15 

MNI1
52 

1m
m 

flb457 D2/3 dopamine 55 0.17499
5557 

0.01499
85 

6 sasaki2012 MNI1
52 

1m
m 

fepe2i DAT dopamine 6 0.00730
1772 

0.89031
0969 

7 dukart2018 MNI1
52 

3m
m 

flumaz
enil 

GAB
Aa 

gaba 6 0.05359
7342 

0.40765
9234 

8 norgaard202
1 

fsaver
age 

16
4k 

flumaz
enil 

GAB
Aa-bz 

gaba 16 -
0.06931
0191 

0.32836
7163 

9 smart2019 MNI1
52 

1m
m 

abp688 mGlu
R5 

glutamate 73 0.10527
2997 

0.08119
1881 

10 gallezot2017 MNI1
52 

1m
m 

gsk189
254 

H3 histamine 8 -
0.02591
5649 

0.74442
5557 

11 ding2010 MNI1
52 

1m
m 

mrb NET norepineph
rine 

77 -
0.07472
1389 

0.25977
4023 
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12 kantonen20
20 

MNI1
52 

3m
m 

carfent
anil 

MOR opioid 204 0.11040
8802 

0.17008
2992 

13 savli2012 MNI1
52 

3m
m 

way10
0635 

5HT1
a 

serotonin 36 0.08821
0344 

0.28057
1943 

14 gallezot2010 MNI1
52 

1m
m 

p943 5HT1
b 

serotonin 65 -
0.04913
9507 

0.45895
4105 

15 beliveau201
7 

fsaver
age 

16
4k 

cimbi3
6 

5HT2
a 

serotonin 29 -
0.00203
3638 

0.97790
221 

16 beliveau201
7 

fsaver
age 

16
4k 

sb2071
45  

5HT4 serotonin 59 0.14333
271 

0.03189
681 

17 beliveau201
7 

fsaver
age 

16
4k 

dasb 5HTT serotonin 100 -
0.02487
6314 

0.72652
7347 

18 radnakrishn
an2018 

MNI1
52 

1m
m 

gsk215
083 

5HT6 serotonin 30 0.13598
9626 

0.02009
799 

 
 

Replicati
on 
source 

space de
ns 

tracer rece
ptor 

neurotran
smitter 

sam
ple 
size 

spearm
an’s 
rho (ρ) 

pspin 

value 

1 bedard20
19 

MNI1
52 

1m
m 

feobv VAC
hT 

acetylcholi
ne 

5 0.05086
6695 

0.43575
6424 

2 tuominen MNI1
52 

2m
m 

feobv VAC
hT 

acetylcholi
ne 

4 -
0.01439
6615 

0.80841
9158 

3 aghourian
2017 

MNI1
52 

1m
m 

feobv VAC
hT 

acetylcholi
ne 

18 -
0.00630
025 

0.91940
8059 

4 jaworska2
020 

MNI1
52 

1m
m 

fallypride D2/3 dopamine 49 0.16840
5309 

0.02229
777 

5 smith201
7 

MNI1
52 

1m
m 

flb457 D2/3 dopamine 37 0.19151
8035 

0.00709
929 

6 dubois20
15 

MNI1
52 

1m
m 

abp688 mGlu
R5 

glutamate 28 0.10159
9185 

0.14948
5051 

7 rosaneto MNI1
52 

1m
m 

abp688 mGlu
R5 

glutamate 22 0.04152
1609 

0.54464
5535 

8 hesse201
7 

MNI1
52 

3m
m 

methylrebo
xetine 

NET norepineph
rine 

10 0.00620
1028 

0.91890
8109 

9 turtonen2
020 

MNI1
52 

1m
m 

carfentanil MOR opioid 39 0.10399
1003 

0.20717
9282 

10 laurikaine
n2018 

MNI1
52 

1m
m 

fmpepd2 CB1 cannabinoi
d 

22 0.03973
8966 

0.57094
2906 

11 beliveau2
017 

fsaver
age 

16
4k 

cumi101 5HT1
a 

serotonin 8 0.06427
7571 

0.48965
1035 

12 beliveau2
017 

fsaver
age 

16
4k 

az1041936
9 

5HT1
b 

serotonin 36 -
0.12000
4048 

0.07019
2981 
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13 savli2012 MNI1
52 

3m
m 

p943 5HT1
b 

serotonin 22 -
0.04011
9403 

0.57714
2286 

14 savli2012 MNI1
52 

3m
m 

altanserin 5HT2
a 

serotonin 19 0.07929
6088 

0.23297
6702 

16 savli2012 MNI1
52 

3m
m 

dasb 5HTT serotonin 30 0.00676
0779 

0.93650
6349 

17 fazio2016 MNI1
52 

3m
m 

madam 5HTT serotonin 10 -
0.08788
1565 

0.16258
3742 
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Supplementary Figure 1:  

Results using alternate component forming threshold τ = 0.01. No significant component was 

detected at 𝜏 < 0.001, suggesting that the detected effect is disperse and spatially widespread. 
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Supplementary Figure 2: Results remain significant when subcortical regions are excluded. 

Regional dysconnectivity was significantly correlated with D2/3 receptors in the absence of 

subcortical only associations. Color scale for PET maps normalized between -1.0 to 1.0 for 

cortex and subcortex separately. (Sandiego et al., 2015. (29) Discovery Sample: ρ=0.179; 

pspin=0.018); (Jaworska et al., 2020. (30) Replication 1: ρ=0.172; pspin=0.029); (Smith et al., 2017 

(31): Replication 2: ρ=0.187; pspin=0.013) 
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Supplementary Figure 3: NBS total degree dysfunction associations with serotonin receptors. 

Regional dysconnectivity was additionally significantly correlated with 5HT4 (ρ=0.143; 

pspin=0.032), and 5HT6 (ρ=0.136; pspin=0.020) serotonin receptors, however, replications were 

not available. Color scale for PET maps normalized between -1.0 to 1.0 for cortex and 

subcortex separately. (5-HT4-R: Beliveau et al., 2017 (33)) (5-HT6: Radhakrishnan et al., 2018 

(34)). 5HT4: BMax was converted from BPND using autoradiography densities.  
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