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When Age Tips the Balance: a Dual 
Mechanism Affecting Hemispheric 
Specialization for Language

Paul Pierre Broca challenged the prevailing 19th-century 
belief that the brain was organized holistically and 

symmetrically, providing evidence to support the idea that 
a prominently lateralized brain is a crucial characteristic 
for effectively carrying out certain cognitive functions, 
particularly language processing (“We speak with the left 
hemisphere,” Broca, 1865, p. 384).

Patterns of hemispheric specialization and interac-
tion of brain networks are complex, developmental, learn-
ing-dependent, and dynamic1. From the earliest stages of 
development, human beings demonstrate behavioral and 
brain asymmetries – as early as ten weeks prenatal2 and 
26 gestational weeks for perisylvian regions3 – which be-
come increasingly perceptible functionally and anatomi-
cally during infancy. Asymmetries in neural networks take 
effect at different times during ontogeny, and almost all 
cortical brain regions show significant left-right asymme-
tries in adulthood4. Language-related regions show covari-
ate developmental trajectories5 and develop more slowly 
in the left hemisphere (LH) than in the right6. A notable 
right hemisphere (RH) language activation pattern in 
young children typically diminishes with age and becomes 
strongly left lateralized for most adults7. Examining the 
language connectome in adult populations and its organi-
zation across several language tasks reveals a pronounced 
left-hemispheric dominance in the central perisylvian 
network, which specializes in processing auditory-verbal 
stimuli8. This dominance of functional connectivity in the 
left hemisphere (LH) for the “core” language network has 
been consistently observed9–12.

However, language processing requires the involve-
ment of a wider brain network, encompassing the core 
perisylvian LH system but also several peripheral or mar-
ginal memory, executive, and sensorimotor systems13; also 
discussed as multiple language networks by Hagoort and 
colleagues14,15. The extended language connectome com-
prises many fine-tuned associative hubs8. It is sharpened 
to underpin effective communication by integrating the 
high-level, multimodal perceptual and cognitive informa-
tion required for language processing16. This sophisticat-
ed processing system is thus extremely powerful, yet it is 
also susceptible to vulnerabilities. Associative hubs are 
indeed highly prone to damage17, and ensuring the optimal 
function of language hubs in later life comes at a consid-
erable cost8,18–20. It is now well-documented that functional 
connectivity and network dynamics remodel with age21–24. 
Importantly, older adults exhibit a default-executive cou-
pling when engaged in demanding tasks, characterized by 
increased prefrontal involvement and reduced suppression 
of the Default Mode Network. In contrast, younger indi-
viduals adjust their functional responses by deactivating 
Default Mode Network regions when performing the same 
tasks25–28. Overall, age-related changes are characterized 
by reduced specificity, selectivity, and lateralization of 
functional brain networks29. Nevertheless, the trajectory 
of hemispheric specialization for language during aging, 
the underlying mechanisms involved, and their impact on 
cognition are still largely unclear and require further in-
vestigation.

Functional asymmetries can be investigated using in-

Elise Roger a, b, c, *, †, Loïc Labache d, e, *, †, Noah Hamlin f, g, Jordanna 
Kruse f, g, Monica Baciu c, Gaelle E. Doucet f, g, h

Aging leads to neuroadaptations, often reducing specificity in functional brain responses. However, the extent 
to which functional specialization of brain hemispheres in the Language-and-Memory Network regions changes 
with adulthood remains unclear. In a cohort of healthy adults, we provide evidence that aging is linked to shifts 
in the cortical organization’s lateralization, unveiling two age-related asymmetry patterns. The first pattern 
indicates a lateralization shift in language regions, with aging rendering language functions more bilateral. 
The second pattern reveals increased specialization in memory regions within the left hemisphere as we age. 
Manifesting around midlife, these shifts correlate with declines in language production performance. Our 
findings offer new insights into how functional brain asymmetries impact language proficiency and underscore 
brain plasticity in aging, providing a dynamic view of the aging brain’s functional architecture.

a Institut Universitaire de Gériatrie de Montréal, Communication and Aging Lab, Montreal, Quebec, Canada. b Faculty of Medicine, University of 
Montreal, Montreal, Quebec, Canada. c Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France. d Department of 
Psychology, Yale University, New Haven, CT, 06520, US. e Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, 
08854, US. f Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, US. g Department of Pharmacology 
and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, US. h Center for Pediatric Brain Health, Boys Town National 
Research Hospital, Omaha, NE, 68178, US. * Equal contribution (first author); these authors contributed equally to this study and can both 
list themselves as first author in their CVs. † Corresponding authors: Loïc Labache: loic.labache@yale.edu, Elise Roger: elise.roger@
umontreal.ca.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.12.04.569978doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569978
http://creativecommons.org/licenses/by-nc-nd/4.0/


Roger et al. 2024 | LanguAging | 2

trinsic functional connectivity, which offers the advantage 
of abstracting from task-related variability associated with 
the nature and difficulty of specific tasks. Resting-state 
networks exhibit spatial patterns that correspond with the 
networks observed during specific cognitive tasks30–32 spe-
cific regions have been identified as predisposed to lan-
guage processing at rest33. Moreover, lateralization mea-
sures in key language hubs, derived from resting-state 
data, can predict functional lateralization during task per-
formance34,35. Furthermore, recent studies on functional 
brain architecture have reported that resting-state networks 
exhibit a hierarchical organization characterized by smooth 
spatial transitions or gradients36,37. The principal gradient 
(G1), explaining the most variance in whole-brain func-
tional connectivity, aligns with established cortical hierar-
chies that progressively process complex or heteromodal 
information from sensory inputs38 (see also Chang and 
colleagues for natural language processing39). Interesting-
ly, the brain hemispheres do not show an identical pattern 
of organization on G140, revealing a notable asymmetry 
for heteromodal networks linked to higher-order cognitive 
functions41,42. Furthermore, a recent study showed that in-
dividuals exhibiting atypical language lateralization dis-
play corresponding hemispheric differences in macroscale 
functional gradient organization, making G1 a marker of 
hemispheric specialization for language43. Therefore, ex-
amining functional asymmetries within intricate networks, 
such as those supporting language processing, and how 
they change with age can bring a new perspective consid-
ering the fundamental underlying functional architecture.

Our study aimed to track age-related changes in 
hemispheric asymmetry within an extended language 
network, leveraging the macroscale functional gradient 
G1 derived from resting-state data. We opted for the Lan-
guage-and-Memory Network (LMN) due to its compre-
hensive ability to capture the nuanced dynamics of lan-
guage in conjunction with other cognitive processes 44. The 
LMN integrates regions specialized in language process-
ing with areas concurrently involved in language and ad-
vanced cognitive functions, such as memory and executive 

processes. Importantly, these heteromodal regions may un-
dergo significant functional changes with aging. To model 
the functional trajectories over an age range from 18 to 88 
years, we applied the Generalized Additive Mixed Mod-
els (GAMMs) technique, which has been previously used 
in structural MRI studies45,46. This allowed us to classify 
Language-and-Memory Network regions based on their 
asymmetry patterns at rest throughout healthy aging. Fur-
thermore, we also explored how these asymmetry changes 
were related to cognitive performance measured during 
various language tasks. To this end, we used Canonical 
Correlation Analyses (CCA) to assess how age impacted 
asymmetries in the language network across multimodal 
data, including anatomy, function, and cognitive perfor-
mances.

Results
Evolution of Hemispheric Gradient Asymme-
tries
We investigated the evolution of the functional connec-
tivity architecture asymmetry within an extended Lan-
guage-and-Memory Network44 (Fig. 1) across the adult 
lifespan using anatomical and resting-state fMRI data 
acquired at 3T (n=728, aged 18 to 88), combining three 
databases (Camcan, Omaha, and Grenoble sample). De-
mographics are available in the Methods section (Database 
Demographics).

As described by Labache and colleagues47, we took 
advantage of recent mathematical modeling of the cortex’s 
functional topography, as Margulies and colleagues pro-
posed37. First, functional connectivity matrices (384×384 
AICHA parcels48) across the full sample were decomposed 
into components that capture the maximum variance in 
connectivity. Consistent with prior work37,49, diffusion map 
embedding50 was used to reduce the dimensionality of the 
connectivity data through the nonlinear projection of the 
voxels into an embedding space. The resulting functional 
components or manifolds, termed gradients, are ordered 
by the variance they explain in the initial functional con-

Figure 1 | Locations of the 37 regions of the Language-and-Memory Network atlas44. On the left: lateral view 
of the left hemisphere. On the right: Medial view of the left hemisphere. The atlas is composed of 74 homotopic ROIs (37 in each 
hemisphere) reported by two task-fMRI studies, one cross-sectional study for language9, and one meta-analysis for memory54 and 
adapted to the Atlas of Intrinsic Connectivity of Homotopic Areas coordinates48. Regions are rendered onto the 3D anatomical tem-
plates of the white matter surface of the left hemisphere in the MNI space with Surf Ice software (https://www.nitrc.org/projects/
surfice/). Color code: purple, regions involved in language; blue, regions involved in episodic memory (encoding and retrieval); 
brown, regions involved in both language and memory. The Anterior Insula (3) (INSa3) is not visible on this render. See Table 1 for 
the correspondences between the abbreviations and the full names of the Language-and-Memory Network regions.
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nectivity matrix. The present analysis focused on the first 
gradient accounting on average for 20% of the total vari-
ance in cortical connectivity (respectively 22% for the 
sample collected in Omaha, 20% for the CamCAN data-
base, and 19% for the sample collected in Grenoble). In 

line with prior work37,51–53, one end of the principal gra-
dient of connectivity was anchored in unimodal regions, 
while the other end encompassed broad expanses of the 
association cortex.

The Language-and-Memory Network corresponds 

Figure 2 | Gradient lifespan trajectories of Language-and-Memory regions. Each region’s graph shows the 
lifespan trajectory of the left (in red) and the right (in green) hemispheres and their asymmetry (in blue). Regions are plotted in 
alphabetical order. Trajectories were fitted using the generalized additive mixed models. Significant regions (pFDR<0.05) are marked 
with a star (*) in the top right corner. Data are residualized for sex, site, and random subject intercepts. Ribbons depict the standard 
error of the mean. The location of regions can be found in Fig. 1. Correspondences between the abbreviations and the full names of 
a region can be found in Table 1.
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to 37 homotopic regions of interest44 (Fig. 1), either spe-
cialized for language9, episodic memory54, or both. Each 
region is described by its gradient asymmetry value. To 
identify regions with changing asymmetry across the lifes-
pan, and as described by Roe and colleagues45,46, we used 
a factor-smooth Generalized Additive Mixed Model with 
Hemisphere×Age (i.e., age-related change in asymmetry) 
as the effect of interest.

Gradient significant age-related changes in asym-
metry were found in 25 of the 37 regions of the 
Language-and-Memory Network (68% of the Lan-
guage-and-Memory Network regions, all pFDR<0.024, Fig. 
2). On the lateral surface of the temporal lobe, significant 
regions were localized alongside the superior temporal 
sulcus (STS1, STS2, STS3), extending to the Superior 
Temporal Gyrus dorsally (T1_4) and joining the posterior 
part of the Inferior Temporal Gyrus (T3_4) and ventrally, 
the Fusiform Gyrus (FUS4). Advancing toward the pari-
etal lobe, the Supramarginal Gyrus (SMG7), the Inferior 
Parietal Gyrus (P2), and the intraparietal sulcus (ips3) also 
showed significant Hemisphere×Age interactions. On the 
lateral surface of the left frontal lobe, the regions showing 
a significant Hemisphere×Age interaction covered the pars 
triangularis part of the Inferior Frontal Gyrus (F3t), as well 
as the pars orbitalis (F2O2), the junction of the Middle 
Frontal Gyrus (F2_1) with the precentral sulcus (prec1, and 
prec4). The superior frontal sulcus (f1_2), the medial part 
of the Superior Frontal Gyrus (F1_2), and the pre-superior 
motor areas (SMA2 and SMA3) were also part of these 
areas in the frontal lobe. Three regions were located within 
the anterior Insula (INSa2, INSa3, and INSa4), while three 
others were located along the Hippocampal (HIPP1 and 
HIPP2) and paraHippocampal Gyri (pHIPP2). The Pos-
terior Cingulum (CINGp2) was selected in the posterior 
medial wall using this approach. The 12 non-significant 
regions (all pFDR>0.174) were localized in the posterior 
part of the temporal (STS4, T2_3, T2_4, and T3_3) and 
the parietal lobes (AG1, AG2, and ips2), the anterior cin-
gulate (CINGa2), the amygdala (AMYG), and the inferior 
frontal gyrus (F3_O1, F3_O2) and sulcus (f2_2).

Clustering of Asymmetry Trajectories
To investigate the asymmetry trajectories associated 
with the Hemisphere×Age interaction, we conducted 
clustering on the 25 significant regions within the Lan-
guage-and-Memory Network to pinpoint areas displaying 
similar patterns of gradient asymmetry changes through-
out adulthood (Fig. 2). The Partition Around Medoids 
algorithm identified two optimal partitions based on the 
mean silhouette width of 0.73. Including the regions that 
did not exhibit significant changes in gradient asymmetries 
over the lifespan, the Language-and-Memory Network re-
gions are grouped into three distinct clusters (Fig. 3A).

The first cluster, highlighted in light blue in Fig. 3 
and referenced similarly throughout the paper, comprised 
regions that showed an average increase in their gradient 
values in the right hemisphere (Fig. 3D). These regions 
transitioned to a slightly rightward asymmetrical state with 
aging (smooth88 yo=-1.72), whereas they exhibited leftward 
asymmetry in earlier life stages (smooth18 yo=9.40, negative 
slope from positive intercept, Fig. 3B). The right hemi-
sphere heteromodality increased significantly with aging, 
while the left hemisphere capacity remained stable. Within 
this cluster, 43% of the regions were dedicated to process-

ing language, while 57% were multimodal, handling lan-
guage and memory functions (Fig. 3C). Cluster 1 regions 
are mapped onto the frontal, parietal, temporal, limbic cor-
tices, and insula. 

The second cluster, highlighted in light orange in 
Fig. 3 and referenced similarly throughout the paper, com-
prised regions that showed an average increase in their 
gradient values in the left hemisphere (Fig. 3E). These re-
gions transitioned to a leftward asymmetry state with ag-
ing (smooth88 yo=12.23), whereas they exhibited rightward 
asymmetry organization in earlier life stages (smooth18 

yo=-3.77, positive slope from negative intercept, Fig. 3B). 
The left hemisphere heteromodal specialization increased 
significantly with aging, while the right hemisphere capac-
ity remained stable. Within this cluster, 9% of the regions 
were dedicated to processing language, while 91% were 
multimodal, handling language and memory functions 
(Fig. 3C). Cluster 2 regions are mapped onto the frontal, 
temporal, and limbic cortices. 

The last cluster (in grey in Fig. 3), named “No 
change,” regrouped the 12 non-significant regions that 
showed no significant changes in their hemispheric asym-
metries throughout the lifespan. This cluster encompass-
es 25% of regions exclusively associated with language 
function and 75% of the regions involved in language and 
memory processes.

The trajectories of clusters 1 and 2 indicated that the 
asymmetry switch occurred at 52.6 years old (Fig. 3B). 
From this age onward, Cluster 2, which mainly encom-
passes multimodal regions, became the dominant leftward 
asymmetrical cluster. Its heteromodality in later life sur-
passed the early life heteromodality of Cluster 1. Mean-
while, Cluster 1 continued its decline towards a symmetri-
cal organization of information integration.

Multimodal Brain-Cognition Association 
Change Analysis
Finally, we examined the extent to which changes in func-
tional asymmetries among the two clusters are related to 
changes in language skills. To gain a comprehensive un-
derstanding, our analysis also incorporated the normalized 
volume of each region within the identified clusters. This 
approach allowed us to identify a tripartite relationship 
connecting anatomy, macroscale functional brain organi-
zation, and cognitive performance throughout aging. To 
achieve this, we used permutation-based Canonical Cor-
relation Analysis (CCA) inference55. CCA reveals modes 
of joint variation between two sets of variables, result-
ing in a set of mutually uncorrelated modes. Each mode 
captures a portion of the multivariate brain and behavior 
covariation. The CCA was conducted between a set of 
brain variables (including gradients and normalized vol-
umes) and a set of cognitive variables evaluating language 
performance (including naming and tip of the tongue for 
language production and accuracy and reaction time in 
language comprehension). Language skill assessments are 
described in the Methods section (Cognitive Assessment 
of Participants). Prior to conducting CCA, we summarized 
the high-dimensional set of brain variables using Princi-
pal Component Analysis55 (PCA). The CCA has been per-
formed on the 554 participants of the CamCAN database 
only due to a lack of behavioral data for other participants.

Cluster 1 – We first conducted a PCA on the brain set 
variables (gradient and normalized volume asymmetries) 
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from the first cluster (Fig. 3A). This analysis indicated that 
the 28 variables could be condensed into four principal 
components, accounting for 49.79% of the total variance in 
the brain set. The first component alone explained 26.75% 
of the total variance and opposed the volume asymme-
tries of the dorsal language pathway regions to those of 
the ventral pathway regions (Fig. 4A, left column). Pos-
itive loadings then indicated a leftward asymmetry of the 
dorsal pathway, while negative ones indicated a rightward 

asymmetry of the ventral pathway. The second component 
alone explained 12.15% of the total variance. It opposed 
the volume asymmetries of the dorsal language pathway 
regions to those of the ventral pathway regions and the 
asymmetries of the first gradient (Fig. 4A, left column). 
Positive loadings then indicated a rightward asymmetry of 
the volume of the dorsal pathway regions and a leftward 
asymmetry of the ventral pathway as well as the gradient 
values. At the same time, negative loadings indicated the 

Figure 3 | Patterns of language-related neurocognitive trajectories. (A) The 25 Language-and-Memory Network 
regions associated with the two main clusters of change, categorized according to the k-medoids classification applied to the Eu-
clidean distance matrix derived from the age-related curves of asymmetry as modeled by the Generalized Additive Mixed Model. 
Cluster 1, in blue, changes from left-sided dominant to bilateral. Cluster 2, in orange, changes from a bilateral organization to a left-
side dominance. See Fig. 1 and Table 1 for a description of the regions. (B) Average trajectory curves of the 1st gradient asymmetries 
from 18 to 88 years old. The two main patterns of inverse changes (Cluster 1 and Cluster 2) with age. The vertical line represents the 
intersection point between Cluster 1 and Cluster 2: 52.55 years old, i.e., the age at which the 1st gradient asymmetry trends reverse. 
Ribbons depict the standard deviation. (C) The proportion of each cluster depends on the underlying cognitive processes: language 
or language and memory. (D-E) Modeling of the average estimated 1st gradient parameter for each hemisphere (left and right) 
across ages for Language-and-Memory Network regions belonging to Cluster 1 (D) and Cluster 2 (E). Ribbons depict the standard 
deviation. The bilateralization of Cluster 1 with age is due to an increase of the 1st gradient values in the right hemisphere, while 
the left hemisphere remains stable. The left-sided specialization of Cluster 2 with age is due to an increase of the 1st gradient values 
in the left hemisphere, while the right hemisphere remains stable. This dual mechanism is mediated by an overspecialization of the 
contralateral hemisphere with age, characterized by an increased capacity to integrate high-level Language-and-Memory Network 
information.
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Figure 4 | Brain-behavior association using canonical correlation analysis. (A) Biplot of the principal component 
analysis of the regions belonging to Cluster 1 (n=14, on the left) and Cluster 2 (n=11, on the right). Each region was characterized 
by its asymmetry values of the 1st gradient and normalized volume. The two principal components of Cluster 1 explained 38.89% 
of the total variance (Principal Component 1=26.74%, Principal Component 2=12.15%). The two principal components of Cluster 
2 explained 33.34% of the total variance (Principal Component 1=20.47%, Principal Component 2=12.87%). For Cluster 1, the 
1st principal component opposed the volume asymmetries of the dorsal language pathway regions to the ventral semantic pathway 
regions. The 2sd component opposed the symmetries of the 1st gradient to the symmetries of the normalized volume. For Cluster 2, 
the 1st principal component opposed the asymmetry of mesial regions versus the volume asymmetry of lateral regions. The 2sd com-
ponent coded for the symmetry of the 1st gradient, specifically, the symmetry of the temporo-mesial memory-related regions: a larger 
value meant a larger symmetry. (B-C) Overview of the canonical correlation analysis first modes. Only data from participants with 
all scores on the selected language indicators were included in the analysis (n=554; CamCAN cohort only). Sex, age, and general 
← cognitive status (MMSE) were entered as covariates. (B) First mode for brain variables. For Cluster 1, the brain mode explained 

(legend continued on next page)
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opposite pattern.
The multimodal canonical correlation analysis on the 

first cluster, which incorporated four brain metrics (prin-
cipal components) and four behavioral metrics, revealed 
a single significant canonical correlation linking anatomy, 
function, and behavior (pFWER<1×10-3). This brain mode ac-
counted for 37.58% of the variance and primarily reflected 
the first and second components of the brain data set (Fig. 
4B, left column). Positive values of the brain mode were 
associated with positive loading values for both the first and 
second principal components. Specifically, these positive 
values in the brain mode indicated a leftward asymmetry 
for all regions regarding gradient and normalized volume 
in the dorsal language pathway regions. Conversely, they 
represented a rightward asymmetry in the ventral pathway 
regions. The behavioral mode accounted for 39.47% of the 
variance and primarily reflected the naming and tip of the 
tongue tests (Fig. 4C, left column). Positive values of the 
behavioral mode were associated with better performanc-
es in language production. The correlation between the 
brain and behavioral modes was 0.28, as depicted in Fig. 5 
(left panel). Improved language production abilities were 
linked to a leftward asymmetry of the gradient value with-
in the Language-and-Memory Network regions of the first 
cluster, a leftward asymmetry of the normalized volume 
for the dorsal language pathway regions, and a rightward 
asymmetry for the ventral language pathway regions.

Cluster 2 – The principal components analysis on the 
brain set variables (22 variables, gradient, and normalized 
volume asymmetries) for the second cluster (Fig. 3A) re-
sulted in six principal components. Together, these princi-
pal components explained 59.35% of the total variance in 
the brain set. The first component alone explained 20.48% 
of the total variance and opposed the volume asymmetries 
of the mesial regions to those of the lateral side (Fig. 4A, 
right column). Positive loadings then indicated a rightward 
asymmetry of the normalized volume of the mesial regions 

and a leftward asymmetry of the lateral regions. Negative 
loadings indicated the opposite pattern. The second com-
ponent alone explained 12.86% of the total variance and 
captured the asymmetry of the gradient, specifically, the 
asymmetry of the temporo-mesial memory-related regions 
(Fig. 4A, right column). Positive loadings indicated a 
rightward asymmetry of the gradient, while negative load-
ings indicated a leftward asymmetry.

The multimodal canonical correlation analysis on the 
second cluster, which incorporated six brain metrics (prin-
cipal components) and four behavioral metrics, revealed 
a single significant canonical correlation linking anatomy, 
function, and behavior (pFWER<1×10-3). This brain mode 
accounted for 23.61% of the variance and opposed the sec-
ond component of the brain data set to the first one (Fig. 
4B, right column). Positive values of the brain mode were 
associated with positive loading values for the second 
component and negative values for the first component. A 
positive brain mode value meant a leftward asymmetry of 
the normalized volume of the mesial regions, a rightward 
asymmetry of the lateral regions, and a rightward asym-
metry of the gradient. The behavioral mode accounted for 
39.04% of the variance and, similarly to Cluster 1, primari-
ly reflected the naming and tip of the tongue tests (Fig. 4C, 
right column). The correlation between the brain and be-
havioral modes was 0.28, as depicted in Fig. 5 (right pan-
el). Improved language production abilities were linked to 
a rightward asymmetry of the gradient value within the 
temporo-mesial memory-related regions, a leftward asym-
metry of the normalized volume of the mesial regions, and 
a rightward asymmetry of the normalized volume of the 
lateral regions.

Discussion
Our study uncovers that functional asymmetry in the in-
tegration of high-level information plays a pivotal role in 

38% of the variance. It is saturated by the first two components of the principal component analysis, mixing the multimodal biomark-
ers included in the analysis (1st gradient and normalized volume). For Cluster 2, the brain mode explained 24% of the variance. It is 
saturated by the first two components of the principal component analysis. (C) First mode of behavioral variables. For Cluster 1 and 
2, the behavioral mode explained 39% of the variance and was saturated by the language production tasks involving lexical access 
and retrieval: naming and tip of the tongue. Results for Cluster 1 are framed in light blue. Results for Cluster 2 are framed in orange.

Figure 5 | Relationship between changes in inter-hemispheric balances and their behavioral implications 
in a multimodal perspective. The first brain and behavioral modes were significantly correlated for both clusters: r=0.28, 
p<1.10-3. The significance of correlations between modes was assessed using permutation testing (n=1000). Color code for age.
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the neural mechanisms underlying language processing 
and capabilities. Longitudinal analysis revealed shifts in 
hemispheric dominance, underscoring the dynamic nature 
of functional lateralization. These changes in asymmetry 
are associated with the language production challenges 
commonly seen in typical aging, disputing the notion that 
increased engagement of the contralateral hemisphere in 
older adults serves a compensatory role. Instead, our find-
ings align with the brain maintenance theory, highlighting 
the importance of preserving a youthful functional brain 
state for optimal cognitive performance as individuals age. 
This study paves the way for further exploration into the 
dynamic processes by which the brain and cognition adapt 
throughout the aging process. 

We found that this dual mechanism of the Lan-
guage-and-Memory Network neurofunctional imbalance 
in integrating complex, high-level information begins after 
age 50 and intensifies over time (Fig. 4B). These findings 
are consistent with previous functional studies showing 
significant transitions in middle age56. They also align with 
the onset of structural changes observed in healthy older 
adults regarding cortical thickness asymmetry, showing 
an accelerated loss of asymmetry after midlife46,57,58. The 
reduction in structural asymmetry is notably significant 
in higher-order cortex and heteromodal regions, which 
may account for the extensive reorganization observed in 
the functional organization of the Language-and-Memo-
ry Network regions. None of these changes in asymmetry 
contributed to maintaining language performance with age 
and were, instead, linked to poorer performance. For Clus-
ter 1 and Cluster 2, the pattern observed in young adults 
was related to more efficient language production (Fig. 6), 
underlining the importance of specialization at all ages for 
effective interhemispheric cooperation. Consequently, the 
changes do not support the hypothesis of a compensato-
ry phenomenon59, preserving language performance with 
age. On the contrary, it aligns with the dedifferentiation 
theory of aging60–63 and the brain maintenance theory64,65, 
suggesting that maintaining a (functional) youthful brain 
state is essential to cognitive preservation as individuals 
age. These findings further underscore Roe and colleagues’ 
insights in their recent investigation of age-related shifts in 
functional asymmetry during memory retrieval66.

The lateralization of individual functions, such as 
language, may be closely associated with the lateralization 
of many seemingly independent processes43. Several stud-
ies suggest that the LH specialization for language may be 
linked to the concept of “complementary lateralization.” 
This stands in contrast to the preferential specialization of 
the contralateral hemisphere (the RH) for other high-level 
cognitive functions like visuospatial processing67–71. It has 
also been reported that the absence of functional lateraliza-
tion for language production reduces performance in lan-
guage tasks and other non-verbal, high-level functions72. 
The attentional and executive control networks73 play a 
role in maintaining these specializations, with LH control 
regions (Control-B) closer to the Default Mode Network 
(DMN-B) and RH attentional regions (DAN-B) nearer 
to the sensory-motor end of the gradient38. Important-
ly, control networks undergo extensive reconfigurations 
during the aging process8,19,21,74–76. These changes affect the 
substantial alterations observed in language’s functional 
asymmetries and other cognitive functions. Although be-
yond the scope of this research, studying how changes in 

neurofunctional equilibriums for different cognitive func-
tions occur with age would offer invaluable insights into 
mutual network interactions.

The human brain typically exhibits marked structural 
left-right disparities, particularly pronounced in perisyl-
vian regions associated with language. Although genetics 
contribute to these asymmetries, their impact appears to be 
less substantial than previously assumed, with heritability 
estimated at less than 30% in adults4,77, suggesting that en-
vironmental factors likely play a substantial role. Current 
research points to two primary developmental trajectories: 
the first is primarily influenced by genetics and lays the 
groundwork for brain lateralization, while the second, built 
upon this genetic foundation, entails prolonged develop-
ment in brain regions responsible for complex functions, 
rendering them more susceptible to the influence of en-
vironmental factors43. The aging process, particularly af-
fecting heteromodal associative brain regions in middle 
age, may introduce a phase of heightened vulnerability to 
environmental and life experience factors from this period 
onward. Pinpointing the specific environmental factors and 
midlife experiences that contribute to resilience or suscep-
tibility in the face of changes in brain asymmetry holds the 
potential to enhance our understanding of the variability in 
neurocognitive aging. This may facilitate the development 
of personalized preventive measures and interventions for 
individuals at risk of experiencing accelerated aging. Im-
portantly, functional asymmetry is not solely dependent on 
cognitive aspects but is also strongly influenced by sensory 
inputs78,79. The decline of the peripheral nervous system 
plays a pivotal role in triggering significant functional re-
configurations within the central nervous system80,81 for the 
consequences of age-related hearing loss on brain func-
tion. Furthermore, hearing impairment in midlife is a sub-
stantial risk factor for dementia, as emphasized in the 2020 
report by the Lancet Commission on dementia prevention, 
intervention, and care82. By elucidating the intricate rela-
tionships between sensory inputs, neural adaptations, and 
cognitive aging, the investigation of bottom-up influences 
presents an intriguing yet relatively unexplored research 
avenue.

Several methodological considerations and potential 
biases require discussion. Our study isolated the effects of 
age from gender through statistical control. However, gen-
der-based disparities in language-related functional con-
nectivity have been reported8, alongside variations in the 
asymmetry of hemispheric functional gradients40. Hence, 
future studies must delve into gender-specific characteris-
tics of the extended language network. Furthermore, given 
that certain aspects of brain aging manifest disparities be-
tween males and females83, special consideration should 
be given to older adults since gender differences could be 
amplified. Moreover, our study predominantly included 
participants from WEIRD (Western, Educated, Industri-
alized, Rich, and Democratic) societies. Considering that 
most of the global population does not fit within this cat-
egory84, it would be beneficial to replicate these findings 
in more diverse populations, considering the importance 
of cultural diversity in research. Resting-state functional 
MRI has gained popularity due to its strong association 
with task-based fMRI activations30,31 and ease of acquisi-
tion, rendering it a valuable proxy for capturing functional 
neuronal processes. Nevertheless, the strength of hemi-
spheric specialization for language depends on multiple 
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factors, particularly the nature of the task9,85. Hence, con-
ducting an additional study encompassing a diverse array 
of language-related functional tasks is essential to validate 
the consistency of the trends observed in our resting-state 
functional data. Open fMRI databases dedicated to lan-
guage, such as InLang8, could facilitate such investiga-
tions. However, the databases available to date only some-
times include a wide age range, which could limit insights 
into older adults. Finally, longitudinal data are imperative 
for providing conclusive evidence regarding evolutionary 
trajectories throughout the lifespan and their cognitive im-
plications. The STAC-r model (revised Scaffolding Theo-
ry of Aging and Cognition model) emphasizes the impor-
tance of examining cognitive changes within individuals86. 
This approach helps distinguish between mechanisms that 
maintain brain integrity and compensatory processes. 
Both mechanisms are crucial for preserving cognition in 
older adults, as noted by Reuter-Lorenz and Park in 2014. 
However, the current scarcity of extensive longitudinal co-
horts, spanning both older and younger adults, hinders the 
identification of features predictive of future brain function 
and cognitive preservation87. It would also be important to 
extend the study to cohorts with mild cognitive impair-
ment (MCI) and related conditions, which is crucial for 
assessing the specificity of the observed effects and dis-
cerning trends across different conditions.

Methods
Database Demographics
The study sample comprised three datasets, accumulating 
728 healthy adults (371 women) from 18 to 88 years old 
(μ=52.84 years, SD=19.19 years, Fig. 6). Included partic-
ipants had resting-state (rs) fMRI and structural MRI from 
a 3T scanner, meeting criteria of passing quality checks 
(fmriprep QC reports) and exhibiting no confirmed neuro-
logical or psychiatric pathologies.

The larger sample, the Cambridge Centre for Ageing 
and Neuroscience Project88 (CamCAN Project: www.mrc-
cbu.cam.ac.uk), included 627 participants (316 women). 
Structural MRI data were acquired on a 3T Siemens TIM 
Trio scanner with a 32-channel head coil, using a T1-weight-
ed, 3D MPRAGE sequence with the following parameters: 
Repetition Time (TR)/Echo Time (TE)/Inversion Time 
(TI)=2250/2.99/900ms, voxel size=1mm isotropic, flip an-
gle=9°, Field of View (FOV)=256×240×192mm3, dura-
tion of acquisition: 4min 32s. For resting-state fMRI scans, 
participants rested with their eyes closed for 8min 40s. Two 
hundred and sixty-one brain volumes were acquired using a 
gradient echo planar imaging sequence (EPI, 32 axial slic-
es, 3.7 mm thickness, TR=2.0s, TE=30ms, flip angle=78°, 
FOV=192×192mm2, voxel size=3×3×4.44mm3). Further 
recruitment information and the acquisition parameters 
have been described elsewhere89. The sample mean age 
was 54.28 years (SD=18.61 years). Participants’ handed-
ness was defined based on the manual preference strength 
assessed with the Edinburgh inventory90: participants with 
a score below 30 were considered left-handers91,92, right-
handers otherwise. The sample contained 56 left-handed 
participants (32 women). CamCAN funding was provid-
ed by the UK Biotechnology and Biological Sciences 
Research Council (grant number BB/H008217/1), with 
support from the UK Medical Research Council and the 
University of Cambridge, UK.

The second sample was collected in Omaha, NE, USA, 
and included 54 participants (31 women). The acquisition 
parameters are fully described in Doucet and colleagues87. 
Briefly, participants were scanned on a 3T Siemens Pris-
ma scanner using a 64-channel head coil. Structural im-
ages were acquired using a T1-weighted, 3D magnetiza-
tion-prepared rapid gradient-echo (MPRAGE) sequence 
with the following parameters: TR=2400ms, TE=2.22ms, 
FOV: 256×256mm, matrix size: 320×320, 0.8mm iso-
tropic resolution, TI=1000ms, 8 degree-flip angle, band-
width=220Hz/Pixel, echo spacing=7.5ms, in-plane accel-
eration GRAPPA (GeneRalized Autocalibrating Partial 
Parallel Acquisition) factor 2, total acquisition time ~7min. 
Participants also completed a resting-state fMRI scan 
(eyes open). Scans were performed using a multi-band 
T2* sequence with the following acquisition parameters: 
TR=800ms, TE=37ms, voxel size=2×2×2mm3, echo spac-
ing 0.58ms, bandwidth=2290Hz/Pixel, number of axial 
slices=72, multi-band acceleration factor=8, 460 volumes. 
The sample mean age was 44.13 years (SD=19.07 years). 
Participants’ handedness was self-reported: the sample 
contained seven left-handed participants (3 women). The 
Institutional Review Board for Research with Human Sub-
jects approved the study at Boys Town National Research 
Hospital. Each participant provided written informed con-
sent and completed the same protocol.

The third sample was collected in Grenoble, France, 
and included 47 participants (24 women). T1‐weighted 
high‐resolution three‐dimensional anatomical volumes 
(T1TFE, 128 sagittal slices, 1.37mm thickness, FO-
V=224×256mm2, 0.8mm isotropic resolution) were ac-
quired for each participant by using a whole‐body 3 T MR 
Philips imager (Achieva 3.0 T TX Philips, Philips Medical 
Systems, Best, NL) with a 32‐channel head coil. For rest-
ing-state fMRI scans, four hundred volumes were acquired 
using a gradient echo planar imaging sequence (FEEPI, 
36 axial slices, 3.5mm thickness, TR=2.0s, TE=30ms, flip 
angle=75°, FOV=192×192mm2, voxel size=2×2×2mm3). 
Participants were asked to lie down in the scanner with 
eyes open on a central cross during the duration of the ac-
quisition period (13min 20s). The sample mean age was 
43.57 years (SD=21.92 years). Participants’ handedness 
was self-reported: the sample contained two left-hand-
ed participants (1 woman). The ethics committee of the 
Grenoble Alpes University Hospital approved data collec-
tion (CPP 09-CHUG-14; MS-14-102).

The Supplementary Information section (Compar-
ative tables of database acquisition parameters) provides 
comparative tables of database acquisition parameters.

We used the whole age range of the sample (n=728, 
18-88 years) to model the asymmetry trajectories further 
throughout the lifespan. By merging the CamCAN cohort 
with Grenoble and Omaha samples, we expanded our age 
coverage from 18 to 88 years old, addressing the lack of 
young adults in the CamCAN cohort (as depicted in Fig. 
6), and making the age distribution uniform, allowing a 
more reliable analysis.

Cognitive Assessment of Participants
For all 728 participants, we checked the Mini Mental State 
Examination (MMSE) scores to ensure that the general 
cognitive functioning of our sample remained within the 
expected range (Q1=28, Q3=30). 

Among the three cohorts in our study, only the Cam-
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CAN cohort underwent an extensive set of behavioral as-
sessments, resulting in cognitive data available for a spe-
cific sub-sample of 554 participants. These assessments, 
conducted outside the MRI scanner, are detailed in previ-
ous literature89,94. We limited our analyses to language skill 
assessments only (Fig. 6). We chose language-related mea-
sures because of their effectiveness in assessing diverse 
language-related aspects, encompassing word production, 
lexical access, and word retrieval (evaluated via picture 
naming accuracy and the tip-of-the-tongue ratio), as well 
as the understanding of semantics and syntax (measured 
through accuracy and reaction time). Further comprehen-
sive descriptions of these behavioral variables are avail-
able in the supplementary materials provided by West and 
colleagues93.

MRI Data Preprocessing
The neuroimaging data were formatted following the 
BIDS standard44,95 (Brain Imaging Data Structure - http://
bids.neuroimaging.io/) and then preprocessed using the 
fMRIPrep software96,97 (https://fmriprep.org/en/stable/). 
The T1w preprocessing included skull stripping, tissue 
segmentation, and spatial normalization. Preprocessing of 

the rs-fMRI data followed the consensus steps for func-
tional images, including motion correction, slice timing 
correction, susceptibility distortion correction, coregistra-
tion, and spatial normalization. The data were represented 
in the Montreal Neurological Institute (MNI) volumetric 
space. Finally, time series were extracted for each homo-
topic region of interest (described in the following sub-
section) using Nilearn (https://nilearn.github.io/) with 
nuisance parameter regression. Confounding regression 
included cerebrospinal fluid and white matter signals and 
translation and rotation parameters for x, y, and z direc-
tions.

Language-and-Memory Network Statistics
Our statistical analyses were based on the Lan-
guage-and-Memory Network atlas, an extended language 
network encompassing language-specific areas and relat-
ed memory regions44. Briefly, the Language-and-Memo-
ry Network comprises 37 homotopic regions of interest. 
Among these 10 regions uniquely dedicated to the core 
supramodal language network9, 19 supporting episodic 
memory54, and eight regions underpinning both language 
and episodic memory processes. The core language net-

Figure 6 | Age and behavioral performance stacked distributions. The behavioral tests assess various cognitive 
functions associated with language: word production, lexical access/retrieval abilities (picture Naming accuracy and Tip of the 
tongue ratio), and semantic and syntactic comprehension abilities (Accuracy and Reaction Time). A description of the behavioral 
variables is available as supplementary material in the article by West and colleagues93. Reaction Time and Tip of the tongue per-
formance were inverted, so all scores close to zero represent worse performances. Stacked histograms for Age and MMSE include 
728 participants. Language Production and Language Comprehension stacked histograms include 554 participants of the CamCAN 
database only due to a lack of behavioral data for other participants.
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work corresponded to a set of heteromodal brain regions 
significantly involved, leftward asymmetrical across three 
language contrasts (listening to, reading, and produc-
ing sentences), and functionally connected. The memo-
ry network was underpinned by areas that demonstrated 
strong activation patterns connected to episodic memory 
processes, such as encoding, effective recovery, and rem-
iniscence. Fig. 1 shows the Language-and-Memory Net-
work in a brain rendering, and Table 1 lists all the Lan-
guage-and-Memory Network regions. It should be noted 
that the language atlas was based on the AICHA atlas, a 
functional brain homotopic atlas optimized for studying 
functional brain asymmetries48.

We computed two features characterizing the high-or-
der Language-and-Memory Network regions44 from the 
preprocessed neuroimaging data: the normalized volume 
and the first functional gradient (G1) reflecting the mac-
roscale functional organization of the cortex37. The first 
gradient captures the most variance of the correlations ma-
trices (20%, 22%, and 19% for CamCAN, Omaha’s, and 
Grenoble’s cohorts, respectively). It has been previously 
shown to accurately reflect the lateralization of the lan-

guage network43.

Normalized Volume
Tissue segmentation was performed on the preprocessed 
T1w using the FreeSurfer pipeline (Version 6.0.0; CentOS 
Linux 6.10.i386). Briefly, the FreeSurfer segmentation 
process included the segmentation of the subcortical white 
matter and deep gray matter volumetric structures, inten-
sity normalization, tessellation of the gray matter white 
matter boundary, automated topology correction, and 
surface deformation following intensity gradients to op-
timally place the gray/white and gray/cerebrospinal fluid 
borders at the location where the greatest shift in intensity 
defines the transition to the other tissue class. Structural 
volumes were normalized to total intracranial volume. 
Normalized volumes were extracted for each of the Lan-
guage-and-Memory Network regions.

Connectivity Embedding
Each participant’s values were obtained for the first func-
tional gradient (G1). The gradients reflect participant con-
nectivity matrices, reduced in their dimensionality through 

Abbreviation Region Function MNI coordinates (left) MNI coordinates (right)
X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)

AG1 Angular Gyrus (1) M -48 -57 44 51 -52 43
AG2 Angular Gyrus (2) LM -38 -70 39 45 -62 36
AMYG Amygdala (1) M -22 0 -12 21 2 -12
CINGa2 Anterior Cingulate Gyrus (2) M -7 34 22 7 33 23
CINGp2 Posterior Cingulate Gyrus (2) M -4 -39 27 8 -43 31
f1_2 superior frontal sulcus (2) M -27 56 1 28 56 7
f2_2 inferior frontal sulcus (2) LM -43 15 29 44 19 28
F1_2 Superior Frontal Gyrus (2) L -12 46 41 12 45 42
F2_1 Middle Frontal Gyrus (1) M -40 41 20 41 44 13
F2O2 Middle Frontal Gyrus: Pars Orbitalis (2) M -41 49 -5 40 50 -4
F3O1 Inferior Frontal Gyrus: Pars Orbitalis (1) L -42 31 -17 44 33 -14
F3O2 Inferior Frontal Gyrus: Pars Orbitalis (2) M -21 23 -21 21 22 -20
F3t Inferior Frontal Gyrus: Pars Triangularis (1) L -49 26 5 50 29 5
FUS1 Fusiform Gyrus (1) M -32 -9 -34 32 -8 -35
HIPP1 Hippocampal Gyrus (1) M -30 -7 -19 30 -5 -18
HIPP2 Hippocampal Gyrus (2) M -25 -32 -3 25 -31 -2
INSa2 Anterior Insula (2) LM -34 17 -13 35 18 -13
INSa3 Anterior Insula (3) LM -34 24 1 37 24 0
INSa4 Anterior Insula (4) M -41 15 3 41 15 4
ips2 intraparietal sulcus (2) M -34 -58 46 37 -52 48
ips3 intraparietal sulcus (3) M -27 -60 44 26 -62 46
P2 Inferior Parietal Gyrus (1) M -45 -53 50 43 -53 48
pHIPP2 Parahippocampal Gyrus (2) M -28 -27 -19 29 -25 -19
prec1 precentral sulcus (1) M -50 6 26 50 10 24
prec4 precentral sulcus (4) LM -42 1 50 44 1 48
SMA2 Supplementary Motor Area (2) L -11 18 63 11 18 63
SMA3 Supplementary Motor Area (3) LM -7 8 66 6 10 66
SMG7 Supramarginal Gyrus (7) L -55 -52 26 55 -46 33
STS1 superior temporal sulcus (1) L -50 14 -22 52 13 -26
STS2 superior temporal sulcus (2) L -55 -7 -13 54 -2 -15
STS3 superior temporal sulcus (3) LM -55 -33 -2 53 -32 0
STS4 superior temporal sulcus (4) L -57 -48 13 55 -46 15
T1_4 Superior Temporal Gyrus (4) L -59 -23 4 60 -20 2
T2_3 Middle Temporal Gyrus (3) LM -61 -35 -5 62 -31 -5
T2_4 Middle Temporal Gyrus (4) L -53 -59 7 57 -53 3
T3_3 Inferior Temporal Gyrus (3) M -56 -53 -14 57 -46 -14
T3_4 Inferior Temporal Gyrus (4) M -50 -61 -8 54 -58 -11

Table 1 | List of the Language-and-Memory network atlas regions. Note: L=language; LM=language and memory; 
M=memory; MNI coordinates, in the left and right hemisphere, of regions (X, Y, Z) in mm; Total regions=74 (37 in each hemi-
sphere).
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the approach of Margulies and colleagues37. Functional 
gradients reflect the topographical organization of the cor-
tex in terms of sensory integration flow, as described by 
Mesulam98. Gradients were computed using Python (Py-
thon version 3.8.10) and the BrainSpace library99 (Python 
package version 0.1.3). Gradients computed at the regional 
and vertex levels performed similarly99.

Average region-level functional connectivity matri-
ces were generated for each individual across the entire 
cortex (i.e., 384 AICHA brain regions). Consistent with 
prior work, each region’s top 10% connections were re-
tained, and other elements in the matrix were set to 0 to 
enforce sparsity37,49. The normalized angle distance be-
tween any two rows of a matrix was calculated to obtain 
a symmetrical similarity matrix. Diffusion map embed-
ding50,100,101 was implemented on the similarity matrix to 
derive the first gradient. Note that the individual-level gra-
dients were aligned using Procrustes rotation (Niterations=10) 
to the corresponding group-level gradient. This alignment 
procedure was used to improve the similarity of the indi-
vidual-level gradients to those from prior literature. Min-
max normalization (0-100) was performed at the individu-
al level for the whole brain38.

Gradient asymmetry was then computed for each par-
ticipant and region. For a given region, gradient asymme-
try corresponded to the difference between the normalized 
gradient value in the left hemisphere minus the gradient 
values in the right hemisphere. A positive gradient asym-
metry value meant a leftward asymmetry; a negative value 
meant a rightward asymmetry.

Statistical Analyses
Statistical analysis was performed using R102 (R version 
4.2.2). Data wrangling was performed using the R library 
dplyr103 (R package version 1.0.10). Graphs were realized 
using the R library ggplot2104 (R package version 3.4.2). 
Brain visualizations were realized using Surf Ice105.

Modeling Gradient Asymmetry Trajecto-
ries Throughout Life. For each region of the Lan-
guage-and-Memory Network, we used factor-smooth 
Generalized Additive Mixed Models (GAMMs, as im-
plemented in the R library gamm4106; R package version 
0.2-6) to fit a smooth gradient trajectory for Age per 
Hemisphere45,46 and to assess the smooth interaction be-
tween Hemisphere×Age within the clusters (see clusters 
definition below). Hemisphere was included as a fixed ef-
fect, while Sex and Site were treated as covariates of no 
interest. A random intercept for each subject was also in-
cluded. GAMMs leverage smooth functions to model the 
non-linear trajectories of mean levels across individuals, 
providing robust estimates that can be applied to cross-sec-
tional and longitudinal cognitive data107. GAMMs were 
implemented using splines, a series of polynomial func-
tions joined together at specific points, known as knots. 
The splines allow the smooth function to adapt its shape 
flexibly to the underlying pattern in the data across the 
range of the predictor variable. This connection allows for 
the modeling of complex, non-linear relationships piece-
wise while maintaining continuity and smoothness across 
the function. To minimize overfitting, the number of knots 
was constrained to be low (k=6). The significance of the 
smooth Hemisphere×Age interaction was assessed by test-
ing for a difference in the smooth term of Age between 

hemispheres. We applied a False Discovery Rate correc-
tion108 (FDR) to control for the number of tests conducted. 
Lastly, we used the linear predictor matrix of the GAMMs 
to obtain asymmetry trajectories underlying the interaction 
Hemisphere×Age and their confidence intervals. These 
were computed as the difference between zero-centered 
(i.e., demeaned) hemispheric age trajectories.

Classification of Age-Asymmetry Trajectories. 
To classify the regions of the Language-and-Memory Net-
work found significant (after applying the FDR correction) 
according to their functional asymmetry skewness profile 
(i.e., increasing leftward asymmetry from baseline, de-
creasing leftward asymmetry, or stabilizing asymmetry 
with age), we computed a dissimilarity matrix (sum of 
square differences) between all trajectories. We applied the 
Partition Around Medoids algorithm (R library cluster109; 
R package version 2.1.4) to identify clusters of regions 
sharing identical lifespan trajectories. Clustering solutions 
from two to seven were considered, and the mean silhou-
ette width determined the optimal solution.

Canonical Correlation Analysis to Assess 
Brain–Behavior Associations. For each cluster, 
we assessed the linear relationship between the gradient 
asymmetry trajectories of the Language-and-Memory Net-
work, their normalized volume, and cognitive language 
performance using permutation-based Canonical Correla-
tion Analyses55 (CCA) inference. CCA is a multivariate 
statistical method identifying linear combinations of two 
sets of variables that correlate maximally. CCA reveals 
modes of joint variation, shedding light on the relation-
ship between cognitive language performance (behavioral 
set), the lifespan trajectories of sensory integration flow 
asymmetry, and its underlying anatomy (brain set). The 
CCA results on a set of m mutually uncorrelated (i.e., or-
thogonal) modes. Each mode captures a unique fraction of 
the multivariate brain and behavior covariation that isn’t 
explained by any of the other m−1 modes. To assess sta-
tistical significance, we determined the robustness of each 
estimated CCA mode using permutation testing with 1,000 
permutations. This test computes p-values to assess the 
null hypothesis of no correlation between components, ad-
hering to the resampling method developed by Winker and 
colleagues110. p-values were controlled over Family-Wise 
Error Rate (FWER; FWER corrected p-values are denoted 
pFWER), which is more appropriate than the FDR correction 
when measuring the significant canonical modes110.

Before conducting the CCA, we summarized the 
high-dimensional set of brain variables (gradient and nor-
malized volume asymmetries) using principal component 
analysis55 (PCA). We retained components corresponding 
to the elbow point in the curve, representing the variance 
explained by each successive principal component. This 
was achieved using the R library PCAtools111 (R package 
version 2.5.15). These retained principal components were 
then designated as the brain set for the CCA. Finally, we 
residualized the two variable sets (brain and behavior sets) 
to remove the influence of sex, age, and MMSE before ex-
ecuting the CCA. 

The CCA has only been realized on the 554 partici-
pants of the CamCAN database due to a lack of behavioral 
data for other participants.
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Data and Code Availability Statement
The CamCAN database is available upon request88,89: 
https://www.cam-can.org/. The second database collected 
in Omaha (NE, USA) is available on request from G.E.D. 
The third database collected in Grenoble (France) is avail-
able on request from M.B. These databases (collected in 
Omaha and Grenoble) are not publicly available due to pri-
vacy or ethical restrictions.

The atlas and the code used to produce the results and 
visualizations can be found here112: https://github.com/
loiclabache/RogerLabache_2023_LanguAging.

CRediT Authorship Contribution 
Statement
Elise Roger: Conceptualization, Data curation, Formal 
analysis, Investigation, Methodology, Software, Valida-
tion, Visualization, Writing - original draft, Writing - re-
view & editing. Loïc Labache: Conceptualization, Data 
curation, Formal analysis, Methodology, Software, Val-
idation, Visualization, Writing - original draft, Writing 
- review & editing. Noah Hamlin: Data curation, Inves-
tigation. Jordanna Kruse: Data curation, Investigation. 
Monica Baciu: Conceptualization, Data curation, Funding 
acquisition, Investigation, Methodology, Resources, Su-
pervision, Writing - review & editing. Gaelle E. Doucet: 
Conceptualization, Data curation, Funding acquisition, In-
vestigation, Supervision, Writing - review & editing.

Disclosure Statement
The authors declare no actual or potential conflict of in-
terest.

Funding
E.R. received funding support from the Canadian Insti-
tutes of Health Research (CIHR), the “Fonds de Recherche 
du Québec - Santé” (FRQS), and the AGE-WELL Cana-
dian network. This work was supported by the grant Neu-
roCoG IDEX UGA in the framework of the “Investisse-
ments d’avenir” program (ANR-15-IDEX-02 to M.B.), 
by the French program “AAP GENERIQUE 2017” run 
by the “Agence Nationale pour la Recherche” (ANR-17-
CE28–0015-01 to M.B.) and by the Institut Universitaire 
de France (M.B.), as well as by the following awards to 
G.E.D.: the National Institutes of Health (P20GM144641, 
R03AG064001). The content is solely the responsibility of 
the authors and does not necessarily represent the official 
views of the National Institutes of Health.

References
1. Tzourio-Mazoyer, N. & Seghier, M. L. The neural bas-

es of hemispheric specialization. Neuropsychologia 
93, 319–324 (2016).

2. Abu-Rustum, R. S., Ziade, M. F. & Abu-Rustum, S. 
E. Reference values for the right and left fetal choroid 
plexus at 11 to 13 weeks: an early sign of ‘develop-
mental’ laterality? J. Ultrasound Med. 32, 1623–1629 
(2013).

3. Kasprian, G. et al. The prenatal origin of hemispher-
ic asymmetry: an in utero neuroimaging study. Cereb. 
Cortex 21, 1076–1083 (2011).

4. Kong, X.-Z. et al. Mapping cortical brain asymme-
try in 17,141 healthy individuals worldwide via the 
ENIGMA Consortium. Proc. Natl. Acad. Sci. U. S. A. 
115, E5154–E5163 (2018).

5. Leroy, F. et al. Early maturation of the linguistic dorsal 
pathway in human infants. J. Neurosci. 31, 1500–1506 
(2011).

6. Sowell, E. R. et al. Mapping cortical change across the 
human life span. Nat. Neurosci. 6, 309–315 (2003).

7. Olulade, O. A. et al. The neural basis of language de-
velopment: Changes in lateralization over age. Proc. 
Natl. Acad. Sci. U. S. A. 117, 23477–23483 (2020).

8. Roger, E. et al. Unraveling the functional attributes of 
the language connectome: crucial subnetworks, flexi-
bility and variability. Neuroimage 263, 119672 (2022).

9. Labache, L. et al. A SENtence Supramodal Areas At-
laS (SENSAAS) based on multiple task-induced ac-
tivation mapping and graph analysis of intrinsic con-
nectivity in 144 healthy right-handers. Brain Struct. 
Funct. 224, 859–882 (2019).

10. Vigneau, M. et al. Meta-analyzing left hemisphere 
language areas: phonology, semantics, and sentence 
processing. Neuroimage 30, 1414–1432 (2006).

11. Friederici, A. D. The brain basis of language pro-
cessing: from structure to function. Physiol. Rev. 91, 
1357–1392 (2011).

12. Braga, R. M., DiNicola, L. M., Becker, H. C. & Buck-
ner, R. L. Situating the left-lateralized language net-
work in the broader organization of multiple special-
ized large-scale distributed networks. J. Neurophysiol. 
124, 1415–1448 (2020).

13. Hertrich, I., Dietrich, S. & Ackermann, H. The mar-
gins of the language network in the brain. Front. Com-
mun. 5, (2020).

14. Hagoort, P. The core and beyond in the language-ready 
brain. Neurosci. Biobehav. Rev. 81, 194–204 (2017).

15. Hagoort, P. The neurobiology of language beyond sin-
gle-word processing. Science 366, 55–58 (2019).

16. Roger, E., Banjac, S., Thiebaut de Schotten, M. & 
Baciu, M. Missing links: The functional unification 
of language and memory (L∪M). Neurosci. Biobehav. 
Rev. 133, 104489 (2022).

17. Fornito, A., Zalesky, A. & Breakspear, M. The con-
nectomics of brain disorders. Nat. Rev. Neurosci. 16, 
159–172 (2015).

18. Baciu, M. et al. Functional MRI evidence for the de-
cline of word retrieval and generation during normal 
aging. Age  38, 3 (2016).

19. Baciu, M. et al. Strategies and cognitive reserve to 
preserve lexical production in aging. Geroscience 43, 
1725–1765 (2021).

20. Hoyau, E. et al. Aging modulates fronto-temporal 
cortical interactions during lexical production. A dy-
namic causal modeling study. Brain Lang. 184, 11–19 
(2018).

21. Doucet, G. E. et al. Atlas55+: Brain Functional Atlas 
of Resting-State Networks for Late Adulthood. Cereb. 
Cortex 31, 1719–1731 (2021).

22. Goh, J. O. S. Functional Dedifferentiation and Altered 
Connectivity in Older Adults: Neural Accounts of 
Cognitive Aging. Aging Dis. 2, 30–48 (2011).

23. Sala-Llonch, R., Bartrés-Faz, D. & Junqué, C. Re-
organization of brain networks in aging: a review of 
functional connectivity studies. Front. Psychol. 6, 663 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.12.04.569978doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569978
http://creativecommons.org/licenses/by-nc-nd/4.0/


Roger et al. 2024 | LanguAging | 14

(2015).
24. Zonneveld, H. I. et al. Patterns of functional connec-

tivity in an aging population: The Rotterdam Study. 
Neuroimage 189, 432–444 (2019).

25. Turner, G. R. & Spreng, R. N. Prefrontal Engagement 
and Reduced Default Network Suppression Co-occur 
and Are Dynamically Coupled in Older Adults: The 
Default-Executive Coupling Hypothesis of Aging. J. 
Cogn. Neurosci. 27, 2462–2476 (2015).

26. Mazoyer, B. et al. Cortical networks for working mem-
ory and executive functions sustain the conscious rest-
ing state in man. Brain Res. Bull. 54, 287–298 (2001).

27. Shulman, G. L. et al. Common Blood Flow Changes 
across Visual Tasks: II. Decreases in Cerebral Cortex. 
J. Cogn. Neurosci. 9, 648–663 (1997).

28. Buckner, R. L. & DiNicola, L. M. The brain’s default 
network: updated anatomy, physiology and evolving 
insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

29. Festini, S. B., Zahodne, L. & Reuter-Lorenz, P. 
A. Theoretical perspectives on age differences in 
brain activation: HAROLD, PASA, CRUNCH—
how do they STAC up? Oxford Research Ency-
clopedia of Psychology (2018) doi:10.1093/acre-
fore/9780190236557.013.400.

30. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. 
& Petersen, S. E. Intrinsic and task-evoked network 
architectures of the human brain. Neuron 83, 238–251 
(2014).

31. Cole, M. W., Ito, T., Bassett, D. S. & Schultz, D. H. 
Activity flow over resting-state networks shapes cog-
nitive task activations. Nat. Neurosci. 19, 1718–1726 
(2016).

32. Ji, J. L. et al. Mapping the human brain’s cortical-sub-
cortical functional network organization. Neuroimage 
185, 35–57 (2019).

33. Doucet, G. et al. Brain activity at rest: a multiscale 
hierarchical functional organization. J. Neurophysiol. 
105, 2753–2763 (2011).

34. Doucet, G. E. et al. Resting-state functional connectiv-
ity predicts the strength of hemispheric lateralization 
for language processing in temporal lobe epilepsy and 
normals. Hum. Brain Mapp. 36, 288–303 (2015).

35. Labache, L. et al. Typical and atypical language brain 
organization based on intrinsic connectivity and multi-
task functional asymmetries. Elife 9, (2020).

36. Huntenburg, J. M., Bazin, P.-L. & Margulies, D. S. 
Large-Scale Gradients in Human Cortical Organiza-
tion. Trends Cogn. Sci. 22, 21–31 (2018).

37. Margulies, D. S. et al. Situating the default-mode net-
work along a principal gradient of macroscale corti-
cal organization. Proc. Natl. Acad. Sci. U. S. A. 113, 
12574–12579 (2016).

38. Gonzalez Alam, T. R. D. J. et al. A tale of two gra-
dients: differences between the left and right hemi-
spheres predict semantic cognition. Brain Struct. 
Funct. 227, 631–654 (2022).

39. Chang, C. H. C., Nastase, S. A. & Hasson, U. Informa-
tion flow across the cortical timescale hierarchy during 
narrative construction. Proc. Natl. Acad. Sci. U. S. A. 
119, e2209307119 (2022).

40. Liang, X. et al. Sex-related human brain asymmetry 
in hemispheric functional gradients. Neuroimage 229, 
117761 (2021).

41. Raemaekers, M., Schellekens, W., Petridou, N. & 

Ramsey, N. F. Knowing left from right: asymmetric 
functional connectivity during resting state. Brain 
Struct. Funct. 223, 1909–1922 (2018).

42. Mancuso, L. et al. The homotopic connectivity of the 
functional brain: a meta-analytic approach. Sci. Rep. 
9, 3346 (2019).

43. Labache, L., Ge, T., Yeo, B. T. T. & Holmes, A. J. 
Language network lateralization is reflected through-
out the macroscale functional organization of cortex. 
Nat. Commun. 14, 3405 (2023).

44. Roger, E. et al. Hubs disruption in mesial temporal 
lobe epilepsy. A resting-state fMRI study on a lan-
guage-and-memory network. Hum. Brain Mapp. 41, 
779–796 (2020).

45. Roe, J. M. et al. Tracing the development and lifespan 
change of population-level structural asymmetry in the 
cerebral cortex. Elife 12, (2023).

46. Roe, J. M. et al. Asymmetric thinning of the cerebral 
cortex across the adult lifespan is accelerated in Alz-
heimer’s disease. Nat. Commun. 12, 721 (2021).

47. Labache, L., Ge, T., Yeo, B. T. T. & Holmes, A. J. 
Language network lateralization is reflected through-
out the macroscale functional organization of cortex. 
Labache_2022_AO (2023).

48. Joliot, M. et al. AICHA: An atlas of intrinsic connec-
tivity of homotopic areas. J. Neurosci. Methods 254, 
46–59 (2015).

49. Dong, H.-M., Margulies, D. S., Zuo, X.-N. & Holmes, 
A. J. Shifting gradients of macroscale cortical organi-
zation mark the transition from childhood to adoles-
cence. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).

50. Coifman, R. R. & Lafon, S. Diffusion maps. Appl. 
Comput. Harmon. Anal. 21, 5–30 (2006).

51. Bernhardt, B. C., Smallwood, J., Keilholz, S. & Mar-
gulies, D. S. Gradients in brain organization. Neuro-
image 251, 118987 (2022).

52. Hong, S.-J. et al. Toward a connectivity gradient-based 
framework for reproducible biomarker discovery. Neu-
roimage 223, 117322 (2020).

53. Mckeown, B. et al. The relationship between individ-
ual variation in macroscale functional gradients and 
distinct aspects of ongoing thought. Neuroimage 220, 
117072 (2020).

54. Spaniol, J. et al. Event-related fMRI studies of epi-
sodic encoding and retrieval: meta-analyses using ac-
tivation likelihood estimation. Neuropsychologia 47, 
1765–1779 (2009).

55. Wang, H.-T. et al. Finding the needle in a high-dimen-
sional haystack: Canonical correlation analysis for 
neuroscientists. Neuroimage 216, 116745 (2020).

56. Hennessee, J. P. et al. Relationship of prefrontal brain 
lateralization to optimal cognitive function differs with 
age. Neuroimage 264, 119736 (2022).

57. Fjell, A. M. et al. When does brain aging accelerate? 
Dangers of quadratic fits in cross-sectional studies. 
Neuroimage 50, 1376–1383 (2010).

58. Vidal-Piñeiro, D. et al. Maintained Frontal Activity 
Underlies High Memory Function Over 8 Years in 
Aging. Cereb. Cortex 29, 3111–3123 (2019).

59. Cabeza, R. et al. Maintenance, reserve and compen-
sation: the cognitive neuroscience of healthy ageing. 
Nat. Rev. Neurosci. 19, 701–710 (2018).

60. Li, Z., Moore, A. B., Tyner, C. & Hu, X. Asymmetric 
connectivity reduction and its relationship to ‘HAR-

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.12.04.569978doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569978
http://creativecommons.org/licenses/by-nc-nd/4.0/


Roger et al. 2024 | LanguAging | 15

OLD’ in aging brain. Brain Res. 1295, 149–158 
(2009).

61. Morcom, A. M. & Friston, K. J. Decoding episodic 
memory in ageing: a Bayesian analysis of activity pat-
terns predicting memory. Neuroimage 59, 1772–1782 
(2012).

62. Morcom, A. M. & Henson, R. N. A. Increased Pre-
frontal Activity with Aging Reflects Nonspecific Neu-
ral Responses Rather than Compensation. J. Neurosci. 
38, 7303–7313 (2018).

63. Reuter-Lorenz, P. A. & Lustig, C. Brain aging: reorga-
nizing discoveries about the aging mind. Curr. Opin. 
Neurobiol. 15, 245–251 (2005).

64. Nyberg, L. Neuroimaging in aging: brain maintenance. 
F1000Res. 6, 1215 (2017).

65. Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, 
U. & Bäckman, L. Memory aging and brain mainte-
nance. Trends Cogn. Sci. 16, 292–305 (2012).

66. Roe, J. M. et al. Age-Related Differences in Functional 
Asymmetry During Memory Retrieval Revisited: No 
Evidence for Contralateral Overactivation or Compen-
sation. Cereb. Cortex 30, 1129–1147 (2020).

67. Zago, L. et al. The association between hemispheric 
specialization for language production and for spatial 
attention depends on left-hand preference strength. 
Neuropsychologia 93, 394–406 (2016).

68. Badzakova-Trajkov, G., Häberling, I. S., Roberts, R. 
P. & Corballis, M. C. Cerebral asymmetries: com-
plementary and independent processes. PLoS One 5, 
e9682 (2010).

69. Cai, Q., Van der Haegen, L. & Brysbaert, M. Comple-
mentary hemispheric specialization for language pro-
duction and visuospatial attention. Proc. Natl. Acad. 
Sci. U. S. A. 110, E322–30 (2013).

70. Cochet, H. Manual asymmetries and hemispheric spe-
cialization: Insight from developmental studies. Neu-
ropsychologia 93, 335–341 (2016).

71. Serrien, D. J. & O’Regan, L. The interactive function-
al biases of manual, language and attention systems. 
Cogn Res Princ Implic 7, 20 (2022).

72. Mellet, E. et al. Weak language lateralization affects 
both verbal and spatial skills: an fMRI study in 297 
subjects. Neuropsychologia 65, 56–62 (2014).

73. Yeo, B. T. T. et al. The organization of the human ce-
rebral cortex estimated by intrinsic functional connec-
tivity. J. Neurophysiol. 106, 1125–1165 (2011).

74. Mowinckel, A. M., Espeseth, T. & Westlye, L. T. Net-
work-specific effects of age and in-scanner subject mo-
tion: a resting-state fMRI study of 238 healthy adults. 
Neuroimage 63, 1364–1373 (2012).

75. Betzel, R. F. et al. Changes in structural and function-
al connectivity among resting-state networks across 
the human lifespan. Neuroimage 102 Pt 2, 345–357 
(2014).

76. He, X. et al. Age-related decrease in functional con-
nectivity of the right fronto-insular cortex with the 
central executive and default-mode networks in adults 
from young to middle age. Neurosci. Lett. 544, 74–79 
(2013).

77. Sha, Z. et al. Handedness and its genetic influences are 
associated with structural asymmetries of the cerebral 
cortex in 31,864 individuals. Proc. Natl. Acad. Sci. U. 
S. A. 118, (2021).

78. Van der Haegen, L. et al. Laterality and unilateral 

deafness: Patients with congenital right ear deafness 
do not develop atypical language dominance. Neuro-
psychologia 93, 482–492 (2016).

79. Hugdahl, K. & Westerhausen, R. Speech processing 
asymmetry revealed by dichotic listening and func-
tional brain imaging. Neuropsychologia 93, 466–481 
(2016).

80. Huang, H.-M. et al. Age-related hearing loss acceler-
ates the decline in fast speech comprehension and the 
decompensation of cortical network connections. Neu-
ral Regeneration Res. 18, 1968–1975 (2023).

81. Schulte, A. et al. Reduced resting state functional con-
nectivity with increasing age-related hearing loss and 
McGurk susceptibility. Sci. Rep. 10, 16987 (2020).

82. Livingston, G. et al. Dementia prevention, interven-
tion, and care: 2020 report of the Lancet Commission. 
Lancet 396, 413–446 (2020).

83. Goyal, M. S. et al. Persistent metabolic youth in the 
aging female brain. Proc. Natl. Acad. Sci. U. S. A. 116, 
3251–3255 (2019).

84. Henrich, J., Heine, S. J. & Norenzayan, A. Most peo-
ple are not WEIRD. Nature 466, 29 (2010).

85. Bradshaw, A. R., Thompson, P. A., Wilson, A. C., 
Bishop, D. V. M. & Woodhead, Z. V. J. Measuring 
language lateralisation with different language tasks: a 
systematic review. PeerJ 5, e3929 (2017).

86. Reuter-Lorenz, P. A. & Park, D. C. How does it STAC 
up? Revisiting the scaffolding theory of aging and 
cognition. Neuropsychol. Rev. 24, 355–370 (2014).

87. Doucet, G. E. et al. Multivariate patterns of brain-be-
havior associations across the adult lifespan. Aging  
14, 161–194 (2022).

88. Shafto, M. A. et al. The Cambridge Centre for Age-
ing and Neuroscience (Cam-CAN) study protocol: a 
cross-sectional, lifespan, multidisciplinary examina-
tion of healthy cognitive ageing. BMC Neurol. 14, 204 
(2014).

89. Taylor, J. R. et al. The Cambridge Centre for Ageing 
and Neuroscience (Cam-CAN) data repository: Struc-
tural and functional MRI, MEG, and cognitive data 
from a cross-sectional adult lifespan sample. Neuro-
image 144, 262–269 (2017).

90. Oldfield, R. C. The assessment and analysis of hand-
edness: the Edinburgh inventory. Neuropsychologia 9, 
97–113 (1971).

91. Hervé, P.-Y., Crivello, F., Perchey, G., Mazoyer, B. & 
Tzourio-Mazoyer, N. Handedness and cerebral ana-
tomical asymmetries in young adult males. Neuroim-
age 29, 1066–1079 (2006).

92. Papadatou-Pastou, M. et al. Human handedness: A 
meta-analysis. Psychol. Bull. 146, 481–524 (2020).

93. West, A., Hamlin, N., Frangou, S., Wilson, T. W. & 
Doucet, G. E. Person-Based Similarity Index for Cog-
nition and Its Neural Correlates in Late Adulthood: 
Implications for Cognitive Reserve. Cereb. Cortex 32, 
397–407 (2022).

94. Samu, D. et al. Preserved cognitive functions with age 
are determined by domain-dependent shifts in network 
responsivity. Nat. Commun. 8, 14743 (2017).

95. Gorgolewski, K. J. et al. The brain imaging data struc-
ture, a format for organizing and describing outputs 
of neuroimaging experiments. Sci Data 3, 160044 
(2016).

96. Esteban, O. et al. fMRIPrep: a robust preprocessing 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.12.04.569978doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569978
http://creativecommons.org/licenses/by-nc-nd/4.0/


Roger et al. 2024 | LanguAging | 16

pipeline for functional MRI. Nat. Methods 16, 111–
116 (2019).

97. Esteban, O. et al. Analysis of task-based functional 
MRI data preprocessed with fMRIPrep. Nat. Protoc. 
15, 2186–2202 (2020).

98. Mesulam, M. M. From sensation to cognition. Brain 
121 ( Pt 6), 1013–1052 (1998).

99. Vos de Wael, R. et al. BrainSpace: a toolbox for the 
analysis of macroscale gradients in neuroimaging and 
connectomics datasets. Commun Biol 3, 103 (2020).

100. Coifman, R. R. et al. Geometric diffusions as a tool 
for harmonic analysis and structure definition of data: 
diffusion maps. Proc. Natl. Acad. Sci. U. S. A. 102, 
7426–7431 (2005).

101. Lafon, S. & Lee, A. B. Diffusion maps and 
coarse-graining: A unified framework for dimension-
ality reduction, graph partitioning, and data set param-
eterization. IEEE Trans. Pattern Anal. Mach. Intell. 
28, 1393–1403 (2006).

102. R Core Team. R: A language and environment for sta-
tistical computing. (R Foundation for Statistical Com-
puting, 2021).

103. Wickham, H., François, R., Henr, y. L., Müller, K. & 
Vaughan, D. dplyr: A Grammar of Data Manipulation. 
(2023).

104. Wickham, H. ggplot2: Elegant Graphics for Data 
Analysis. (Springer, 2016).

105. NITRC: Surf ice: Tool/resource info. http://www.ni-
trc.org/projects/surfice/.

106. Wood, S. & Scheipl, F. gamm4: Generalized additive 
mixed models using mgcv and lme4. (2020).

107. Sørensen, Ø., Walhovd, K. B. & Fjell, A. M. A recipe 
for accurate estimation of lifespan brain trajectories, 
distinguishing longitudinal and cohort effects. Neuro-
image 226, 117596 (2021).

108. Benjamini, Y. & Yekutieli, D. The control of the false 
discovery rate in multiple testing under dependency. 
Ann. Stat. 29, 1165–1188 (2001).

109. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. 
& Hornik, K. cluster: Cluster Analysis Basics and 
Extensions. Preprint at https://CRAN.R-project.org/
package=cluster (2022).

110. Winkler, A. M., Renaud, O., Smith, S. M. & Nichols, 
T. E. Permutation inference for canonical correlation 
analysis. Neuroimage 220, 117065 (2020).

111. Blighe, K. & Lun, A. PCAtools: PCAtools: Every-
thing Principal Components Analysis. Preprint at 
https://github.com/kevinblighe/PCAtools (2021).

112. Labache, L. et al. When Age Tips the Balance: a Dual 
Mechanism Affecting Hemispheric Specialization for 
Language. RogerLabache_2023_LanguAging. (Zeno-
do, 2023). doi:10.5281/zenodo.10278266.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.12.04.569978doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569978
http://creativecommons.org/licenses/by-nc-nd/4.0/


Roger et al. 2024 | LanguAging | 17

Supplementary Information
Comparative tables of database acquisition parameters
MRI scanner. 

CamCAN: 3T Siemens TIM Trio scanner with a 32-channel head coil
Omaha: 3T Siemens Prisma scanner with a 64-channel head coil
Grenoble: 3T Philips Achieva TX scanner with a 32‐channel head coil

Scan type: Structural MRI scans (T1-weighted).

Cohort Sequence TR 
(ms)

TE 
(ms)

Flip angle 
(°)

FOV
(mm)

Voxel size
(mm)

Other

CamCAN MPRAGE 2250 2.99 9 256 × 240 × 192 1 × 1 × 1 GRAPPA: 2; TI: 900 ms
Omaha MPRAGE 2400 2.22 8 256 × 256 x 256 0.8 × 0.8 × 0.8 GRAPPA: 2; TI: 1000 ms
Grenoble MPRAGE 2100 2.36 8 256 × 240 × 160 0.8 × 0.8 × 0.8 GRAPPA: 2; TI: 1000 ms

Notes. TR = repetition time; TE = echo time; FOV = field of view; MPRAGE = magnetization, prepared gradient echo; 
GRAPPA = GeneRalized Autocalibrating Partial Parallel Acquisition; TI = inversion time.

Scan type: Functional MRI scans (resting-state)

Cohort Sequence TR 
(ms)

TE 
(ms)

Flip 
angle (°)

FOV
(mm)

Voxel size
(mm)

Volumes 
(N)

Slices 
(N)

Duration Task

CamCAN EPI 1970 30 78 192×192 3×3×4.44 261 32 8min 40s Rest with eyes 
closed

Omaha Multi-
band EPI 800 37 78 192×192 2×2×2 460 72 11min 

83s
Rest with eyes on 
a fixation cross

Grenoble EPI 2000 30 75 192×192 2×2×2 400 36 13min 
20s

Rest with eyes on 
a fixation cross

Notes. TR = repetition time; TE = echo time; FOV = field of view; EPI = T2*-weighted gradient echo planar image.
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