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1.  INTRODUCTION

The human brain exhibits marked hemispheric special-
ization, translated by differences in structure and function 
between the left and right hemispheres, which underpin 
key cognitive abilities such as language (Hervé et  al., 
2013). While structural asymmetries refer to anatomical 
differences (e.g., in cortical thickness or regional volume), 
functional lateralization describes the unequal distribu-
tion of cognitive functions, such as language processing, 
across hemispheres. Both forms of asymmetry emerge 
early in life, as evidenced by prenatal imaging studies 

showing perisylvian asymmetries by 26 gestational 
weeks (Kasprian et al., 2011), and become increasingly 
pronounced during development (Abu-Rustum et  al., 
2013; Kong et al., 2018).

Language lateralization, a fundamental characteristic 
of human brain organization (Güntürkün & Ocklenburg, 
2017), traditionally emphasizes the left hemisphere’s 
dominance for core language functions (Tzourio-Mazoyer 
et  al., 2017). However, neuroimaging has revealed that 
language processing engages a broader set of regions 
beyond the classical Broca’s and Wernicke’s areas. 
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These include transmodal associative hubs that support 
the integration of linguistic, mnemonic, and executive 
information (Braga et  al., 2020; Labache et  al., 2019, 
2020; Roger et al., 2022; Salvo et al., 2024). This extended 
language network includes areas in the anterior temporal 
lobe, medial frontal cortex, and posterior cingulate, as 
well as subcortical and cerebellar structures (Wolna et al., 
2025), forming a distributed, functionally integrated  
system.

Several approaches have been used to define the 
architecture of the language network. A key distinction 
lies between group-level averaging and individual-subject 
functional localization. Fedorenko and colleagues’ work 
demonstrates that language-selective areas can be iden-
tified with high reliability across individuals using dedi-
cated language localizers (Fedorenko & Thompson-Schill, 
2014; Fedorenko et al., 2010). More recently, individual-
ized functional connectomics has enabled the identifica-
tion of the language network even in resting-state and 
non-related task data (Shain & Fedorenko, 2025). These 
efforts culminated in a probabilistic atlas of the language 
network from over 800 individuals (Lipkin et  al., 2022), 
highlighting robust left-lateralized frontotemporal pat-
terns comparable with previous work (Labache et  al., 
2019) and meta-analysis (Price, 2012).

Despite advances in mapping the language connec-
tome, age-related changes in functional lateralization 
remain poorly understood (Baciu & Roger, 2024). While 
some studies suggest a decline in lateralization with 
aging (Festini et al., 2018), others report compensatory 
bilateralization or preserved asymmetries in certain 
regions (Turner & Spreng, 2015). Moreover, language lat-
eralization may evolve differently across subcomponents 
of the language system, especially in regions supporting 
multimodal integration or memory (Roger et al., 2022).

To address this gap, we investigate how functional 
asymmetries in the extended language network evolve 
across the adult lifespan. We use resting-state fMRI to 
derive individual-level measures of lateralization. Resting-
state functional connectivity reliably reflects the architec-
ture of task-based language networks (Braga et al., 2020; 
Cole et  al., 2014, 2016; Ji et  al., 2019) and provides a 
window into intrinsic brain organization. Our focus is on 
the principal gradient of connectivity (G1), a macroscale 
functional gradient that organizes the cortex from uni-
modal to heteromodal regions (Margulies et  al., 2016). 
Prior work has shown that G1 differs between hemi-
spheres and correlates with language dominance 
(Labache, Ge, et al., 2023; Margulies et al., 2016).

The goal of this study is to elucidate the mechanisms 
by which age-related changes in brain asymmetry impact 
language processing and cognitive functions. Our inno-
vative approach combines the analysis of resting-state 

functional connectivity (macroscale functional gradient 
G1) with advanced statistical modeling to provide a com-
prehensive view of how the aging brain adapts its func-
tional architecture. We opted for the Language-and-Memory 
Network due to its comprehensive ability to capture the 
nuanced dynamics of language in conjunction with other 
cognitive processes (Roger et al., 2020). The Language-
and-Memory Network integrates regions specialized in 
language processing with areas concurrently involved in 
language and advanced cognitive functions, such as 
memory and executive processes. Importantly, these 
heteromodal regions may undergo significant functional 
changes with aging. To model the functional trajectories 
over an age range from 18 to 88 years, we applied the 
Generalized Additive Mixed Models (GAMMs) technique, 
which has been previously used in structural MRI studies 
(Roe et  al., 2021, 2023). This allowed us to classify 
Language-and-Memory Network regions based on their 
asymmetry patterns at rest throughout normal aging. 
Furthermore, we also explored how these asymmetry 
changes were related to cognitive performance mea-
sured during various language tasks. To this end, we 
used Canonical Correlation Analysis (CCA) to assess how 
age impacted asymmetries in the language network 
across multimodal data, including anatomy, function, and 
cognitive performances.

The study’s findings will advance our understanding of 
how normal aging impacts complex brain networks. This 
research aligns with the rising global emphasis on gero-
science, which aims to elucidate the biological mecha-
nisms of aging and foster strategies for maintaining 
health in older adults. By identifying potential biomarkers 
for early detection of age-related cognitive decline, it 
supports the development of targeted interventions to 
preserve or improve cognitive health. It may pave the way 
for personalized neurorehabilitation approaches by pro-
viding valuable insights into individual differences in brain 
asymmetry and cognitive function. Given the urgent need 
to address cognitive decline and enhance cognitive lon-
gevity in an aging population, these insights are both 
timely and crucial.

2.  METHODS

2.1.  Database demographics

The study sample comprised 3 datasets, accumulating 
728 healthy adults (371 women) from 18 to 88 years old 
(μ = 52.84 years, SD = 19.19 years, Fig. 1). Included par-
ticipants had resting-state (rs) fMRI and structural MRI 
from a 3T scanner, meeting criteria of passing quality 
checks (fmriprep QC reports) and exhibiting no confirmed 
neurological or psychiatric pathologies.
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The larger sample, the Cambridge Centre for Ageing 
and Neuroscience Project (Shafto et al., 2014) (CamCAN 
Project: www​.mrc​-cbu​.cam​.ac​.uk), included 627 partici-
pants (316 women). Structural MRI data were acquired 
on a 3T Siemens TIM Trio scanner with a 32-channel 
head coil, using a T1-weighted, 3D MPRAGE sequence 
with the following parameters: repetition time (TR)/echo 

time (TE)/inversion time (TI)  =  2250/2.99/900  ms, voxel 
size = 1 mm isotropic, flip angle = 9°, field of view (FOV)  
= 256 × 240 × 192 mm3, duration of acquisition: 4 min 
32  s. For resting-state fMRI scans, participants rested 
with their eyes closed for 8 min 40 s. Two hundred and 
sixty-one brain volumes were acquired using a gradient 
echo planar imaging sequence (EPI, 32 axial slices, 

Fig. 1.  Age and behavioral performance stacked distributions. The behavioral tests assess various cognitive functions 
associated with language: word production, lexical access/retrieval abilities (picture naming accuracy and tip of the tongue 
ratio), and semantic and syntactic comprehension abilities (accuracy and reaction time). A description of the behavioral 
variables is available as Supplementary Materials in the article by West et al. (2022). Reaction time and tip of the tongue 
performance were inverted, so all scores close to zero represent worse performances. Stacked histograms for age and 
MMSE include 728 participants. Language Production and Language Comprehension stacked histograms include 554 
participants of the CamCAN database only due to a lack of behavioral data for other participants.

http://www.mrc-cbu.cam.ac.uk
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3.7 mm thickness, TR = 2.0 s, TE = 30 ms, flip angle = 78°, 
FOV = 192 × 192 mm2, voxel size = 3 × 3 × 4.44 mm3). 
Further recruitment information and the acquisition 
parameters have been described elsewhere (Taylor  
et  al., 2017). The sample mean age was 54.28  years 
(SD = 18.61 years). Participants’ handedness was defined 
based on the manual preference strength assessed with 
the Edinburgh inventory (Oldfield, 1971): participants with 
a score below 30 were considered left-handers (Hervé 
et  al., 2006; Papadatou-Pastou et  al., 2020), right-
handers otherwise. The sample contained 56 left-handed 
participants (32 women). CamCAN funding was provided 
by the UK Biotechnology and Biological Sciences 
Research Council (grant number BB/H008217/1), with 
support from the UK Medical Research Council and the 
University of Cambridge, UK.

The second sample was collected in Omaha, NE, 
USA, and included 54 participants (31 women). The 
acquisition parameters are fully described in Doucet et al. 
(2022). Briefly, participants were scanned on a 3T Sie-
mens Prisma scanner using a 64-channel head coil. 
Structural images were acquired using a T1-weighted, 3D 
magnetization-prepared rapid gradient-echo (MPRAGE) 
sequence with the following parameters: TR = 2400 ms, 
TE = 2.22 ms, FOV: 256 × 256 mm, matrix size: 320 × 320, 
0.8 mm isotropic resolution, TI = 1000 ms, 8 degree-flip 
angle, bandwidth = 220 Hz/Pixel, echo spacing = 7.5 ms, 
in-plane acceleration GRAPPA (GeneRalized Autocali-
brating Partial Parallel Acquisition) factor 2, total acquisi-
tion time ~7 min. Participants also completed a 
resting-state fMRI scan (eyes open). Scans were per-
formed using a multi-band T2* sequence with the follow-
ing acquisition parameters: TR = 800 ms, TE = 37 ms, 
voxel size = 2 × 2 × 2 mm3, echo spacing 0.58 ms, band-
width = 2290 Hz/Pixel, number of axial slices = 72, multi-
band acceleration factor = 8, 460 volumes. The sample 
mean age was 44.13 years (SD = 19.07 years). Partici-
pants’ handedness was self-reported: the sample con-
tained seven left-handed participants (three women). The 
Institutional Review Board for Research with Human 
Subjects approved the study at Boys Town National 
Research Hospital. Each participant provided written 
informed consent and completed the same protocol.

The third sample was collected in Grenoble, France, 
and included 47 participants (24 women). T1‐weighted 
high‐resolution three‐dimensional anatomical volumes 
(T1TFE, 128 sagittal slices, 1.37  mm thickness, 
FOV = 224 × 256 mm2, 0.8 mm isotropic resolution) were 
acquired for each participant by using a whole‐body 3T 
MR Philips imager (Achieva 3.0 T TX Philips, Philips Med-
ical Systems, Best, NL) with a 32-channel head coil. For 
resting-state fMRI scans, 400 volumes were acquired 
using a gradient echo planar imaging sequence (FEEPI, 

36 axial slices, 3.5 mm thickness, TR = 2.0 s, TE = 30 ms, 
flip angle  =  75°, FOV  = 192  ×  192  mm2, voxel size = 
2 × 2 × 2 mm3). Participants were asked to lie down in the 
scanner with eyes open on a central cross for the dura-
tion of the acquisition period (13 min 20 s). The sample 
mean age was 43.57 years (SD = 21.92 years). Partici-
pants’ handedness was self-reported: the sample con-
tained two left-handed participants (one woman). The 
ethics committee of the Grenoble Alpes University Hospi-
tal approved data collection (CPP 09-CHUG-14; MS-
14-102).

The Supplementary Materials (Comparative Tables of 
Database Acquisition Parameters section) provides com-
parative tables of database acquisition parameters.

We used the whole age range of the sample (n = 728, 
18–88 years) to model the asymmetry trajectories further 
throughout the lifespan. By merging the CamCAN cohort 
with Grenoble and Omaha samples, we expanded our 
age coverage from 18 to 88  years old, addressing the 
lack of young adults in the CamCAN cohort (as depicted 
in Fig. 1), and making the age distribution uniform, allow-
ing a more reliable analysis.

Although the three datasets were acquired on different 
MRI scanners with varying acquisition parameters, sev-
eral precautions were taken to ensure the validity of com-
bining them into a unified analysis. First, all imaging data 
were preprocessed using the same standardized pipeline 
(fmriprep), including spatial normalization to MNI space 
and uniform regression of nuisance variables. Second, 
site was explicitly modeled as a covariate of no interest in 
all statistical analyses using Generalized Additive Mixed 
Models, a flexible framework well suited for accounting 
for both linear and nonlinear inter-site differences (Roe 
et al., 2021, 2023). Third, a validation analysis comparing 
asymmetry trajectory classifications between the 
CamCAN-only sample and the full combined sample 
revealed a high Sørensen–Dice index (SDI = 0.92; Dice, 
1945; T. Sørensen, 1948), confirming the robustness and 
reproducibility of the results across cohorts. Furthermore, 
combining datasets from different institutions enhances 
the generalizability of findings (Thompson et  al., 2020). 
Large-scale consortia such as ENIGMA, which aggregate 
data across numerous scanners and sites, have demon-
strated the value and feasibility of such approaches 
(Thompson et  al., 2020). Importantly, this study uses a 
cross-sectional design, and thus age-related patterns 
reflect inter-individual differences rather than within-
subject longitudinal change.

2.2.  Cognitive assessment of participants

For all 728 participants, we checked the Mini Mental 
State Examination (MMSE) scores to ensure that the 
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general cognitive functioning of our sample remained 
within the expected range (Q1 = 28, Q3 = 30).

Among the three cohorts in our study, only the Cam-
CAN cohort underwent an extensive set of behavioral 
assessments, resulting in cognitive data available for a 
specific sub-sample of 554 participants. These assess-
ments, conducted outside the MRI scanner, are detailed 
in the literature (Samu et al., 2017; Taylor et al., 2017). We 
limited our analyses to language skill assessments only 
(Fig. 1). We chose language-related measures because of 
their effectiveness in assessing diverse language-related 
aspects, encompassing word production, lexical access, 
and word retrieval (evaluated via picture naming accu-
racy and the tip-of-the-tongue ratio), as well as the 
understanding of semantics and syntax (measured 
through accuracy and reaction time). Further comprehen-
sive descriptions of these behavioral variables are avail-
able in the Supplementary Materials provided by West 
et al. (2022).

2.3.  MRI data preprocessing

The neuroimaging data were formatted following the 
BIDS standard (Gorgolewski et  al., 2016; Roger et  al., 
2020) (Brain Imaging Data Structure—http://bids.neuro-
imaging.io/) and then preprocessed using the fMRIPrep 
software (https://fmriprep​.org​/en​/stable/; Esteban et al., 
2019, 2020). fMRIPrep version 21.0.2 was run using its 
default processing pipeline in a containerized environ-
ment with singularity, ensuring computational reproduc-
ibility. The T1w preprocessing included skull stripping, 
tissue segmentation, and spatial normalization. T1-
weighted images were corrected for intensity non-
uniformity using N4BiasFieldCorrection (ANTs), 
skull-stripped with antsBrainExtraction.sh, and spatially 
normalized to the ICBM 152 Nonlinear Asymmetrical 
template (MNI152NLin2009cAsym) using nonlinear regis-
tration with ANTs. Preprocessing of the rs-fMRI data fol-
lowed the consensus steps for functional images, 
including motion correction, slice timing correction, sus-
ceptibility distortion correction, coregistration, and spa-
tial normalization. The rs-fMRI images were motion 
corrected using FSL’s MCFLIRT, slice-time corrected 
using AFNI’s 3dTshift, and coregistered to the T1w using 
boundary-based registration (bbregister). Susceptibility 
distortion correction was applied using fieldmap-less 
correction with SyN in ANTs. Functional images were 
then normalized to MNI space using the same ANTs 
transformations. The data were represented in the Mon-
treal Neurological Institute (MNI) volumetric space. 
Finally, time series were extracted for each homotopic 
region of interest (described in the following subsection) 
using Nilearn (https://nilearn​.github​.io/) with nuisance 

parameter regression. Before time series extraction, data 
were spatially smoothed with a 6 mm FWHM Gaussian 
kernel and temporally filtered (0.01–0.1  Hz) to remove 
low-frequency drift and high-frequency noise. Confound-
ing regression included cerebrospinal fluid and white 
matter signals and translation and rotation parameters 
for x, y, and z directions.

2.4.  Language-and-memory network statistics

Our statistical analyses were based on the Language-
and-Memory Network atlas, an extended language net-
work encompassing language-specific areas and related 
memory regions (Roger et  al., 2020). Briefly, the 
Language-and-Memory Network comprises 37 homo-
topic regions of interest. Among these 10 regions uniquely 
dedicated to the core supramodal language network 
(Labache et  al., 2019), 19 supporting episodic memory 
(Spaniol et  al., 2009) and 8 regions underpinning both 
language and episodic memory processes. The core lan-
guage network corresponded to a set of heteromodal 
brain regions significantly involved, leftward asymmetri-
cal across three language contrasts (listening to, reading, 
and producing sentences), and functionally connected 
(Labache et al., 2019). This functional asymmetry aligns 
with longstanding evidence of anatomical asymmetries in 
perisylvian cortex that are thought to form a structural 
basis for the evolution and development of language-
related circuits (Hutsler, 2003; Kong et al., 2022; Meyer 
et al., 2014; Toga & Thompson, 2003; Tzourio-Mazoyer 
et al., 2018).

These anatomical asymmetries, including the early 
developing leftward expansion of the planum temporale 
and superior temporal sulcus, are evident from the 23rd 
gestational week (Tzourio-Mazoyer et al., 2020) and are 
believed to result from developmental gradients in cortical 
neurogenesis and radial migration (Geschwind & Rakic, 
2013; Rakic, 1988). While such asymmetries likely scaf-
fold the emergence of left-lateralized language function 
(Achorn et al., 2025), they do not directly account for the 
specialization of higher-order linguistic processes. Recent 
neurocognitive models (Fedorenko & Thompson-Schill, 
2014; Matchin & Hickok, 2020) emphasize that early per-
ceptual and phonological operations localize to these 
structurally asymmetric regions, whereas syntactic and 
combinatorial computations are distributed across func-
tionally lateralized fronto-temporal circuits. This dissocia-
tion supports the view that structural and functional 
asymmetries, although developmentally related, subserve 
distinct stages of language processing.

Furthermore, the memory network was underpinned 
by areas that demonstrated strong activation patterns 
connected to episodic memory processes, such as 

http://bids.neuroimaging.io/
http://bids.neuroimaging.io/
https://fmriprep.org/en/stable/
https://nilearn.github.io/
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encoding, effective recovery, and reminiscence. Figure 2 
shows the Language-and-Memory Network in a brain 
rendering, and Supplementary Table  S1 lists all the 
Language-and-Memory Network regions. It should be 
noted that the language atlas was based on the AICHA 
atlas, a functional brain homotopic atlas optimized for 
studying functional brain asymmetries (Joliot et al., 2015).

We computed two features characterizing the high-
order Language-and-Memory Network regions (Roger 
et al., 2020) from the preprocessed neuroimaging data: 
the normalized volume and the first functional gradient 
(G1) reflecting the macroscale functional organization of 
the cortex (Margulies et al., 2016). The first gradient cap-
tures the most variance of the correlations matrices 

(20%, 22%, and 19% for CamCAN, Omaha’s, and Greno-
ble’s cohorts, respectively). It has been previously shown 
to accurately reflect the lateralization of the language net-
work (Labache, Ge, et al., 2023).

2.5.  Normalized volume

Tissue segmentation was performed on the prepro-
cessed T1w using the FreeSurfer pipeline (Version 6.0.0; 
CentOS Linux 6.10.i386; Fischl et al., 2004). Briefly, the 
FreeSurfer segmentation process included the segmen-
tation of the subcortical white matter and deep gray  
matter volumetric structures, intensity normalization, tes-
sellation of the gray matter white matter boundary, 

Fig. 2.  Locations of the 37 regions from the Language-and-Memory Network atlas in the left hemisphere and their 
homotopic counterparts in the right hemisphere (Roger et al., 2020). On the left: lateral view of the left (top row) and right 
(bottom row) hemisphere. On the right: medial view of the left (top row) and right (bottom row) hemisphere. The atlas is 
composed of 74 homotopic ROIs (37 in each hemisphere) reported by 2 task-fMRI studies, 1 cross-sectional study for 
language (Labache et al., 2019), and 1 meta-analysis for memory (Spaniol et al., 2009) and adapted to the atlas of intrinsic 
connectivity of homotopic areas coordinates (Joliot et al., 2015). Regions are rendered onto the 3D anatomical templates 
of the white matter surface of the left hemisphere in the MNI space with Surf Ice software (www​.nitrc​.org​/projects​/surfice/). 
Color code: purple, regions involved in language; blue, regions involved in episodic memory (encoding and retrieval); 
brown, regions involved in both language and memory. The anterior insula (3) (INSa3) is not visible on this render. See 
Supplementary Table S1 for the correspondences between the abbreviations and the full names of the Language-and-
Memory Network regions.

http://www.nitrc.org/projects/surfice/
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automated topology correction, and surface deformation 
following intensity gradients to optimally place the gray/
white and gray/cerebrospinal fluid borders at the location 
where the greatest shift in intensity defines the transition 
to the other tissue class. Structural volumes were nor-
malized to total intracranial volume. Normalized volumes 
were extracted for each of the Language-and-Memory 
Network regions.

2.6.  Connectivity embedding

Each participant’s values were obtained for the first func-
tional gradient (G1). The gradients reflect participant con-
nectivity matrices, reduced in their dimensionality through 
the approach of Margulies et al. (2016). Functional gradi-
ents reflect the topographical organization of the cortex 
in terms of sensory integration flow, as described by 
Mesulam (1998). Gradients were computed using Python 
(Python version 3.8.10) and the BrainSpace library (Vos 
de Wael et al., 2020) (Python package version 0.1.3). Gra-
dients computed at the regional and vertex levels per-
formed similarly (Vos de Wael et al., 2020).

Average region-level functional connectivity matrices 
were generated for each individual across the entire cor-
tex (i.e., 384 AICHA brain regions). Consistent with prior 
work, each region’s top 10% connections were retained, 
and other elements in the matrix were set to 0 to enforce 
sparsity (Dong et al., 2021; Margulies et al., 2016). The 
normalized angle distance between any two rows of a 
matrix was calculated to obtain a symmetrical similarity 
matrix. Diffusion map embedding (Coifman & Lafon, 
2006; Coifman et al., 2005; Lafon & Lee, 2006) was imple-
mented on the similarity matrix to derive the first gradi-
ent. Note that the individual-level gradients were aligned 
using Procrustes rotation (Niterations  =  10) to the corre-
sponding group-level gradient. This alignment procedure 
was used to improve the similarity of the individual-level 
gradients to those from the literature. Min-max normal-
ization (0–100) was performed at the individual level for 
the whole brain (Gonzalez Alam et al., 2022).

Gradient asymmetry was then computed for each par-
ticipant and region. For a given region, gradient asymme-
try corresponded to the difference between the 
normalized gradient value in the left hemisphere minus 
the gradient values in the right hemisphere. A positive 
gradient asymmetry value meant a leftward asymmetry; a 
negative value meant a rightward asymmetry.

2.7.  Statistical analyses

Statistical analysis was performed using R (R version 
4.2.2; R Core Team, 2021). Data wrangling was per-
formed using the R library dplyr (R package version 

1.0.10; Wickham et al., 2023). Graphs were realized using 
the R library ggplot2 (R package version 3.4.2; Wickham, 
2016). Brain visualizations were realized using Surf Ice 
(NITRC: Surf Ice: Tool/Resource Info, n.d.), and were 
made reproducible following guidelines to generate pro-
grammatic neuroimaging visualizations (Chopra et  al., 
2023).

2.7.1.  Modeling gradient asymmetry trajectories 
throughout life

For each region of the Language-and-Memory Network, 
we used factor-smooth Generalized Additive Mixed Mod-
els (GAMMs, as implemented in the R library gamm4; R 
package version 0.2-6; Wood & Scheipl, 2020) to fit a 
smooth gradient trajectory for age per hemisphere (Roe 
et al., 2021, 2023) and to assess the smooth interaction 
between Hemisphere × Age within the clusters (see clus-
ters definition below). Hemisphere was included as a 
fixed effect, while sex and site were treated as covariates 
of no interest. A random intercept for each subject was 
also included. GAMMs leverage smooth functions to 
model the non-linear trajectories of mean levels across 
individuals, providing robust estimates that can be 
applied to cross-sectional and longitudinal cognitive data 
(Ø. Sørensen et  al., 2021). GAMMs were implemented 
using splines, a series of polynomial functions joined 
together at specific points, known as knots. The splines 
allow the smooth function to adapt its shape flexibly to 
the underlying pattern in the data across the range of the 
predictor variable. This connection allows for the model-
ing of complex, non-linear relationships piecewise while 
maintaining continuity and smoothness across the func-
tion. To minimize overfitting, the number of knots was 
constrained to be low (k  =  6). The significance of the 
smooth Hemisphere×Age interaction was assessed by 
testing for a difference in the smooth term of age between 
hemispheres. We applied a false discovery rate correc-
tion (FDR; Benjamini & Yekutieli, 2001) to control for the 
number of tests conducted. Lastly, we used the linear 
predictor matrix of the GAMMs to obtain asymmetry tra-
jectories underlying the interaction Hemisphere×Age and 
their confidence intervals. These were computed as the 
difference between zero-centered (i.e., demeaned) hemi-
spheric age trajectories.

2.7.2.  Classification of age–asymmetry trajectories

To classify the regions of the Language-and-Memory Net-
work found significant (after applying the FDR correction) 
according to their functional asymmetry skewness profile 
(i.e., increasing leftward asymmetry from baseline, decreas-
ing leftward asymmetry, or stabilizing asymmetry with age), 
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we computed a dissimilarity matrix (sum of square differ-
ences) between all trajectories. We applied the Partition 
Around Medoids algorithm (R library cluster; R package 
version 2.1.4; Maechler et al., 2022) to identify clusters of 
regions sharing identical lifespan trajectories. Clustering 
solutions from two to seven were considered, and the 
mean silhouette width determined the optimal solution.

2.7.3.  Canonical correlation analysis to assess 
brain–behavior associations

For each cluster, we assessed the linear relationship 
between the gradient asymmetry trajectories of the 
Language-and-Memory Network, their normalized vol-
ume, and cognitive language performance using 
permutation-based Canonical Correlation Analyses (CCA; 
Wang et al., 2020) inference. CCA is a multivariate statis-
tical method identifying linear combinations of two sets of 
variables that correlate maximally. CCA reveals modes of 
joint variation, shedding light on the relationship between 
cognitive language performance (behavioral set), the 
lifespan trajectories of sensory integration flow asymme-
try, and its underlying anatomy (brain set). The CCA 
results with a set of m mutually uncorrelated (i.e., orthog-
onal) modes. Each mode captures a unique fraction of 
the multivariate brain and behavior covariation that is not 
explained by any of the other m−1 modes. To assess sta-
tistical significance, we determined the robustness of 
each estimated CCA mode using permutation testing 
with 1,000 permutations. This test computes p-values to 
assess the null hypothesis of no correlation between 
components, adhering to the resampling method devel-
oped by Winker et  al. (2020). p-values were controlled 
over family-wise error rate (FWER; FWER corrected p-
values are denoted pFWER), which is more appropriate than 
the FDR correction when measuring the significant 
canonical modes (Winkler et al., 2020).

Before conducting the CCA, we summarized the high-
dimensional set of brain variables (gradient and normal-
ized volume asymmetries) using principal component 
analysis (PCA; Wang et al., 2020). We retained compo-
nents corresponding to the elbow point in the curve, rep-
resenting the variance explained by each successive 
principal component. This was achieved using the R 
library PCAtools (R package version 2.5.15; Blighe & Lun, 
2021). These retained principal components were then 
designated as the brain set for the CCA. Finally, we resid-
ualized the two variable sets (brain and behavior sets) to 
remove the influence of sex, age, and MMSE before exe-
cuting the CCA.

The CCA has only been realized on the 554 partici-
pants of the CamCAN database due to a lack of behav-
ioral data for other participants.

3.  RESULTS

3.1.  Evolution of hemispheric gradient asymmetries

We investigated age-related changes in the asymmetry of 
the functional connectivity architecture asymmetry within 
the extended Language-and-Memory Network (Fig.  2; 
Roger et al., 2020) across the adult lifespan using ana-
tomical and resting-state fMRI data acquired at 3T 
(n = 728, aged 18 to 88 years), combining 3 databases 
(Camcan, Omaha, and Grenoble sample). Demographics 
are available in the Methods section (Database Demo-
graphics).

As described by Labache, Ge, et al. (2023), we took 
advantage of recent mathematical modeling of the cor-
tex’s functional topography, as Margulies et  al. (2016) 
proposed. First, functional connectivity matrices 
(384 × 384 AICHA parcels; Joliot et al., 2015) across the 
full sample were decomposed into components that cap-
ture the maximum variance in connectivity. Consistent 
with prior work (Dong et al., 2021; Margulies et al., 2016), 
diffusion map embedding (Coifman & Lafon, 2006) was 
used to reduce the dimensionality of the connectivity 
data through the nonlinear projection of the voxels into 
an embedding space. The resulting functional compo-
nents or manifolds, termed gradients, are ordered by the 
variance they explain in the initial functional connectivity 
matrix. The present analysis focused on the first gradient 
accounting on average for 20% of the total variance in 
cortical connectivity (respectively, 22% for the sample 
collected in Omaha, 20% for the CamCAN database, and 
19% for the sample collected in Grenoble). In line with 
prior work (Bernhardt et  al., 2022; Hong et  al., 2020; 
Margulies et al., 2016; Mckeown et al., 2020), one end of 
the principal gradient of connectivity was anchored in 
unimodal regions, while the other end encompassed 
broad expanses of the association cortex.

The Language-and-Memory Network corresponds to 
37 homotopic regions of interest (Roger et  al., 2020) 
(Fig. 2), either specialized for language (Labache et al., 
2019, 2020), episodic memory (Spaniol et al., 2009), or 
both. Each region is described by its gradient asymmetry 
value. To identify regions with changing asymmetry 
across the lifespan, and as described by Roe et al. (2021, 
2023), we used a factor-smooth Generalized Additive 
Mixed Model with Hemisphere  ×  Age (i.e., age-related 
change in asymmetry) as the effect of interest.

Gradient significant age-related changes in asymme-
try were found in 25 of the 37 regions of the Language-
and-Memory Network (68% of the Language-and-Memory 
Network regions, all p

FDR < 0.024, Fig. 3). On the lateral 
surface of the temporal lobe, significant regions were 
localized alongside the superior temporal sulcus (STS1, 
STS2, STS3), extending to the superior temporal gyrus 
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Fig. 3.  Gradient lifespan trajectories of Language-and-Memory regions. Each region’s graph shows the lifespan trajectory 
of the left (in red) and the right (in green) hemispheres and their asymmetry (in blue; positive values indicate leftward 
asymmetries, negative ones indicate rightward asymmetries). Regions are plotted in alphabetical order. Trajectories were 
fitted using the generalized additive mixed models. Significant regions (pFDR < 0.05) are marked with a star (*) in the top 
right corner. Data are residualized for sex, site, and random subject intercepts. Ribbons depict the standard error of the 
mean. The location of regions is shown in Figure 2. Correspondences between the abbreviations and the full names of a 
region are given in Supplementary Table S1.
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dorsally (T1_4) and joining the posterior part of the infe-
rior temporal gyrus (T3_4) and ventrally, the fusiform 
gyrus (FUS4). Advancing toward the parietal lobe, the 
supramarginal gyrus (SMG7), the inferior parietal gyrus 
(P2), and the intraparietal sulcus (ips3) also showed sig-
nificant Hemisphere  ×  Age interactions. On the lateral 
surface of the left frontal lobe, the regions showing a sig-
nificant Hemisphere × Age interaction covered the pars 
triangularis part of the inferior frontal gyrus (F3t), as well 
as the pars orbitalis (F2O2), the junction of the middle 
frontal gyrus (F2_1) with the precentral sulcus (prec1, and 
prec4). The superior frontal sulcus (f1_2), the medial part 
of the superior frontal gyrus (F1_2), and the pre-superior 
motor areas (SMA2 and SMA3) were also part of these 
areas in the frontal lobe. Three regions were located 
within the anterior insula (INSa2, INSa3, and INSa4), 
while three others were located along the hippocampal 
(HIPP1 and HIPP2) and parahippocampal gyri (pHIPP2). 
The posterior cingulum (CINGp2) was selected in the 
posterior medial wall using this approach. The 12 non-
significant regions (all pFDR > 0.174) were localized in the 
posterior part of the temporal (STS4, T2_3, T2_4, and 
T3_3) and the parietal lobes (AG1, AG2, and ips2), the 
anterior cingulate (CINGa2), the amygdala (AMYG), and 
the inferior frontal gyrus (F3_O1, F3_O2) and sulcus 
(f2_2). See Supplementary Table S2 for a description of 
the asymmetry in early and late life for the 25 regions 
showing significant age-related changes in gradient 
asymmetry.

3.2.  Clustering of asymmetry trajectories

To investigate the asymmetry trajectories associated with 
the Hemisphere×Age interaction, we conducted cluster-
ing on the 25 significant regions within the Language-
and-Memory Network to pinpoint areas displaying similar 
patterns of gradient asymmetry changes throughout 
adulthood (Fig.  3). The Partition Around Medoids algo-
rithm identified two optimal partitions based on the mean 
silhouette width of 0.73. Including the regions that did not 
exhibit significant changes in gradient asymmetries over 
the lifespan, the Language-and-Memory Network regions 
are grouped into three distinct clusters (Fig. 4A).

The first cluster, highlighted in light blue in Figure  4 
and referenced similarly throughout the paper, comprised 
regions that showed an average increase in their gradient 
values in the right hemisphere (Fig.  4D). These regions 
transitioned to a slightly rightward asymmetrical state 
with aging (smooth88 yo = -1.72), whereas they exhibited 
leftward asymmetry in earlier life stages (smooth18 

yo = 9.40, negative slope from positive intercept, Fig. 4B). 
The right hemisphere heteromodality increased signifi-
cantly with aging, while the left hemisphere capacity 

remained stable. Within this cluster, 43% of the regions 
were dedicated to processing language, while 57% were 
multimodal, handling language and memory functions 
(Fig. 4C). Cluster 1 regions are mapped onto the frontal, 
parietal, temporal, limbic cortices, and insula.

The second cluster, highlighted in light orange in Fig-
ure 4 and referenced similarly throughout the paper, com-
prised regions that showed an average increase in their 
gradient values in the left hemisphere (Fig.  4E). These 
regions transitioned to a leftward asymmetry state with 
aging (smooth88 yo = 12.23), whereas they exhibited right-
ward asymmetry organization in earlier life stages 
(smooth18 yo  =  -3.77, positive slope from negative inter-
cept, Fig. 4B). The left hemisphere heteromodal special-
ization increased significantly with aging, while the right 
hemisphere capacity remained stable. Within this cluster, 
9% of the regions were dedicated to processing lan-
guage, while 91% were multimodal, handling language 
and memory functions (Fig.  4C). Cluster 2 regions are 
mapped onto the frontal, temporal, and limbic cortices.

The last cluster (gray in Fig. 4), named “No change,” 
regrouped the 12 non-significant regions that showed no 
significant changes in their hemispheric asymmetries 
throughout the lifespan. This cluster encompasses 25% 
of regions exclusively associated with language function 
and 75% of the regions involved in language and mem-
ory processes.

The trajectories of Clusters 1 and 2 indicated that the 
asymmetry switch occurred at 52.6 years (Fig. 4B). From 
this age onward, Cluster 2, which mainly encompasses 
multimodal regions, became the dominant leftward 
asymmetrical cluster. Its heteromodality in later life sur-
passed the early life heteromodality of Cluster 1. Mean-
while, Cluster 1 continued its decline toward a 
symmetrical organization of information integration.

3.3.  Multimodal brain–cognition association change 
analysis

Finally, we examined the extent to which changes in func-
tional asymmetries among the two clusters are associated 
with individual differences in language-related cognitive 
performance across the adult lifespan. To gain a compre-
hensive understanding, our analysis also incorporated the 
normalized volume of each region within the identified 
clusters. This approach allowed us to identify a tripartite 
relationship connecting anatomy, macroscale functional 
brain organization, and cognitive performance across dif-
ferent ages. To achieve this, we used permutation-based 
Canonical Correlation Analysis (CCA) inference (Wang 
et al., 2020). CCA reveals modes of joint variation between 
two sets of variables, resulting in a set of mutually uncor-
related modes. Each mode captures a portion of the 
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Fig. 4.  Patterns of language-related neurocognitive trajectories. (A) The 25 Language-and-Memory Network regions 
associated with the two main clusters of change, categorized according to the k-medoids classification applied to the 
Euclidean distance matrix derived from the age-related curves of asymmetry as modeled by the Generalized Additive 
Mixed Model. Cluster 1, in blue, changes from left-sided dominant to bilateral. Cluster 2, in orange, changes from a 
bilateral organization to a left-side dominance. See Figure 2 and Supplementary Table S1 for a description of the regions. 
(B) Average trajectory curves of the 1st gradient asymmetries from 18 to 88 years old. The two main patterns of inverse 
changes (Cluster 1 and Cluster 2) with age. The vertical line represents the intersection point between Cluster 1 and 
Cluster 2: 52.55 years old, that is, the age at which the 1st gradient asymmetry trends reverse. Ribbons depict the standard 
deviation. (C) The proportion of each cluster depends on the underlying cognitive processes: language or language and 
memory. (D–E) Modeling of the average estimated 1st gradient parameter for each hemisphere (left and right) across ages 
for Language-and-Memory Network regions belonging to Cluster 1 (D) and Cluster 2 (E). Ribbons depict the standard 
deviation. The bilateralization of Cluster 1 with age is due to an increase of the 1st gradient values in the right hemisphere, 
while the left hemisphere remains stable. The left-sided specialization of Cluster 2 with age is due to an increase of the 1st 
gradient values in the left hemisphere, while the right hemisphere remains stable. This dual mechanism is mediated by an 
overspecialization of the contralateral hemisphere with age, characterized by an increased capacity to integrate high-level 
Language-and-Memory Network information.
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multivariate brain and behavior covariation. The CCA was 
conducted between a set of brain variables (including gra-
dients and normalized volumes) and a set of cognitive 
variables evaluating language performance (including 
naming and tip of the tongue for language production and 
accuracy and reaction time in language comprehension). 
Language skill assessments are described in the Methods 
section (Cognitive Assessment of Participants). Prior to 
conducting CCA, we summarized the high-dimensional 
set of brain variables using principal component analysis 
(Wang et al., 2020) (PCA). The CCA has been performed 
on the 554 participants of the CamCAN database only due 
to a lack of behavioral data for other participants.

Cluster 1 – We first conducted a PCA on the brain set 
variables (gradient and normalized volume asymmetries) 
from the first cluster (Fig. 4A). This analysis indicated that 
the 28 variables could be condensed into 4 principal 
components, accounting for 49.79% of the total variance 
in the brain set. The first component alone explained 
26.75% of the total variance and opposed the volume 
asymmetries of the dorsal language pathway regions to 
those of the ventral pathway regions (Fig.  5A, left col-
umn). Positive loadings then indicated a leftward asym-
metry of the dorsal pathway, while negative loadings 
indicated a rightward asymmetry of the ventral pathway. 
The second component alone explained 12.15% of the 
total variance. It opposed the volume asymmetries of the 
dorsal language pathway regions to those of the ventral 
pathway regions and the asymmetries of the first gradient 
(Fig. 5A, left column). Positive loadings then indicated a 
rightward asymmetry of the volume of the dorsal pathway 
regions and a leftward asymmetry of the ventral pathway 
as well as the gradient values. At the same time, negative 
loadings indicated the opposite pattern.

The multimodal canonical correlation analysis on the 
first cluster, which incorporated four brain metrics (princi-
pal components) and four behavioral metrics, revealed a 
single significant canonical correlation linking anatomy, 
function, and behavior (pFWER < 1 × 10-3). We investigated 
the CCA loadings for the brain set of variables, which 
represent the contribution of each PCA component to the 
significant canonical correlation and are referred to as the 
“brain mode” hereafter. This brain mode accounted for 
37.58% of the variance and primarily reflected the first 
and second PCA components of the brain data set 
(Fig. 5B, left column). Positive values of the brain mode 
were associated with positive loading values for both the 
first and second principal components. Specifically, 
these positive values in the brain mode indicated a left-
ward asymmetry for all regions regarding gradient and 
normalized volume in the dorsal language pathway 
regions. Conversely, they represented a rightward asym-
metry in the ventral pathway regions. We analyzed the 
CCA loadings for the behavioral set of variables, which 
represent the contribution of each behavioral language 
test to the significant canonical correlation and are 
referred to as the “behavioral mode” hereafter. The 
behavioral mode accounted for 39.47% of the variance 
and primarily reflected the naming and tip of the tongue 
tests (Fig. 5C, left column). Positive values of the behav-
ioral mode were associated with better performances in 
language production. The correlation between the brain 
and behavioral modes was 0.28, as depicted in Figure 6 
(left panel). Improved language production abilities were 
linked to a leftward asymmetry of the gradient value 
within the Language-and-Memory Network regions of the 
first cluster, a leftward asymmetry of the normalized vol-
ume for the dorsal language pathway regions, and a 

Fig. 5.  Brain–behavior association using canonical correlation analysis. (A) Biplot of the principal component analysis of 
the regions belonging to Cluster 1 (n = 14, on the left) and Cluster 2 (n = 11, on the right). Each region was characterized 
by its asymmetry values of the 1st gradient and normalized volume. The two principal components of Cluster 1 explained 
38.89% of the total variance (Principal Component 1 = 26.74%, Principal Component 2 = 12.15%). The two principal 
components of Cluster 2 explained 33.34% of the total variance (Principal Component 1 = 20.47%, Principal Component 
2 = 12.87%). For Cluster 1, the 1st principal component opposed the volume asymmetries of the dorsal language pathway 
regions to the ventral semantic pathway regions. The 2nd component opposed the symmetries of the 1st gradient to the 
symmetries of the normalized volume. For Cluster 2, the 1st principal component opposed the asymmetry of mesial 
regions versus the volume asymmetry of lateral regions. The 2sd component coded for the symmetry of the 1st gradient, 
specifically, the symmetry of the temporo-mesial memory-related regions: a larger value meant a larger symmetry. (B–C) 
Overview of the canonical correlation analysis first modes. Only data from participants with all scores on the selected 
language indicators were included in the analysis (n = 554; CamCAN cohort only). Sex, age, and general cognitive status 
(MMSE) were entered as covariates. (B) First mode for brain variables. For Cluster 1, the brain mode explained 38% 
of the variance. It is saturated by the first two components of the principal component analysis, mixing the multimodal 
biomarkers included in the analysis (1st gradient and normalized volume). For Cluster 2, the brain mode explained 24% of 
the variance. It is saturated by the first two components of the principal component analysis. (C) First mode of behavioral 
variables. For Clusters 1 and 2, the behavioral mode explained 39% of the variance and was saturated by the language 
production tasks involving lexical access and retrieval: naming and tip of the tongue. Results for Cluster 1 are framed in 
light blue. Results for Cluster 2 are framed in orange.
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rightward asymmetry for the ventral language pathway 
regions.

Cluster 2 – The principal components analysis on the 
brain set variables (22 variables, gradient, and normalized 
volume asymmetries) for the second cluster (Fig.  4A) 
resulted in 6 principal components. Together, these prin-
cipal components explained 59.35% of the total variance 
in the brain set. The first component alone explained 
20.48% of the total variance and opposed the volume 
asymmetries of the mesial regions to those of the lateral 
side (Fig. 5A, right column). Positive loadings then indi-

cated a rightward asymmetry of the normalized volume of 
the mesial regions and a leftward asymmetry of the lateral 
regions. Negative loadings indicated the opposite pat-
tern. The second component alone explained 12.86% of 
the total variance and captured the asymmetry of the gra-
dient, specifically, the asymmetry of the temporo-mesial 
memory-related regions (Fig. 5A, right column). Positive 
loadings indicated a rightward asymmetry of the gradient, 
while negative loadings indicated a leftward asymmetry.

The multimodal canonical correlation analysis on the 
second cluster, which incorporated six brain metrics 
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(principal components) and four behavioral metrics, 
revealed a single significant canonical correlation linking 
anatomy, function, and behavior (pFWER < 1 × 10-3). This 
brain mode accounted for 23.61% of the variance and 
opposed the second component of the brain data set to 
the first one (Fig. 5B, right column). Positive values of the 
brain mode were associated with positive loading values 
for the second component and negative values for the 
first component. A positive brain mode value meant a 
leftward asymmetry of the normalized volume of the 
mesial regions, a rightward asymmetry of the lateral 
regions, and a rightward asymmetry of the gradient. The 
behavioral mode accounted for 39.04% of the variance 
and, similarly to Cluster 1, primarily reflected the naming 
and tip of the tongue tests (Fig. 5C, right column). The 
correlation between the brain and behavioral modes was 
0.28, as depicted in Figure 6 (right panel). Improved lan-
guage production abilities were linked to a rightward 
asymmetry of the gradient value within the temporo-
mesial memory-related regions, a leftward asymmetry of 
the normalized volume of the mesial regions, and a right-
ward asymmetry of the normalized volume of the lateral 
regions.

4.  DISCUSSION

Our study uncovers that functional asymmetry in the inte-
gration of high-level information plays a pivotal role in the 
neural mechanisms underlying language processing and 
capabilities. Trajectory modeling across the lifespan 
revealed shifts in hemispheric dominance, underscoring 
the dynamic nature of functional lateralization. These 
changes in asymmetry are associated with the language 
production challenges commonly seen in typical aging, 
disputing the notion that increased engagement of the 
contralateral hemisphere in older adults serves a com-
pensatory role. Instead, our findings align with the brain 
maintenance theory, highlighting the importance of pre-

serving a youthful functional brain state for optimal cog-
nitive performance as individuals age. This study paves 
the way for further exploration into the dynamic pro-
cesses by which the brain and cognition adapt through-
out the aging process.

We found that this dual mechanism of the Language-
and-Memory Network neurofunctional imbalance in inte-
grating complex, high-level information begins after age 
50 years and intensifies over time (Fig. 4B). These find-
ings are consistent with previous functional studies 
showing significant transitions in middle age (Hennessee 
et al., 2022). They also align with the onset of structural 
changes observed in healthy older adults regarding corti-
cal thickness asymmetry, showing an accelerated loss of 
asymmetry after midlife (Fjell et al., 2010; Roe et al., 2021; 
Vidal-Piñeiro et  al., 2019). The reduction in structural 
asymmetry is notably significant in higher-order cortex 
and heteromodal regions, which may account for the 
extensive reorganization observed in the functional orga-
nization of the Language-and-Memory Network regions. 
None of these changes in asymmetry contributed to 
maintaining language performance with age and were, 
instead, linked to poorer performance. For Cluster 1 and 
Cluster 2, the pattern observed in young adults was 
related to more efficient language production (Fig.  6), 
underlining the importance of specialization at all ages 
for effective interhemispheric cooperation. Consequently, 
the changes do not support the hypothesis of a compen-
satory phenomenon (Cabeza et al., 2018), preserving lan-
guage performance with age. On the contrary, it aligns 
with the dedifferentiation theory of aging (Li et al., 2009; 
Morcom & Friston, 2012; Morcom & Henson, 2018; 
Reuter-Lorenz & Lustig, 2005) and the brain maintenance 
theory (Nyberg, 2017; Nyberg et  al., 2012), suggesting 
that maintaining a (functional) youthful brain state is 
essential to cognitive preservation as individuals age. 
These findings further underscore Roe and colleagues’ 
insights in their recent investigation of age-related shifts 

Fig. 6.  Relationship between changes in inter-hemispheric balances and their behavioral implications in a multimodal 
perspective. The first brain and behavioral modes were significantly correlated for both clusters: r = 0.28, p < 1.10-3. The 
significance of correlations between modes was assessed using permutation testing (n = 1000). Color code for age.
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in functional asymmetry during memory retrieval (Roe 
et al., 2020).

Our results suggest that changes in language lateral-
ization across adulthood are not isolated phenomena but 
are deeply embedded in a broader reorganization of the 
brain’s functional architecture. This aligns with the con-
cept of “complementary lateralization,” where specializa-
tion for language in the left hemisphere is counterbalanced 
by the right hemisphere’s engagement in non-verbal, 
high-level functions such as visuospatial processing 
(Badzakova-Trajkov et al., 2010; Cai et al., 2013; Cochet, 
2016; Labache et  al., 2024; Serrien & O’Regan, 2022; 
Zago et al., 2016). Our observation that left hemisphere 
regions in Cluster 2 gain functional specialization with 
age while right hemisphere-dominated Cluster 1 becomes 
more bilateral supports this interdependent view. It also 
echoes prior findings that reduced language lateralization 
is linked to diminished performance in both linguistic and 
non-linguistic domains (Mellet et  al., 2014). This may 
reflect a breakdown in the fine-tuned functional segrega-
tion necessary for optimal cognitive efficiency. Further-
more, control networks—crucial for managing interactions 
across these cognitive domains—undergo significant 
reconfigurations with age (Baciu et al., 2021; Betzel et al., 
2014; Doucet et  al., 2021; He et  al., 2013; Mowinckel 
et al., 2012; Roger et al., 2022). Our findings may thus 
reflect an age-related shift in the equilibrium of inter-
network coordination, particularly along the cortical gra-
dient that spans from heteromodal to unimodal systems 
(Gonzalez Alam et al., 2022). These large-scale reconfig-
urations are likely constrained by underlying molecular 
and cellular asymmetries—such as lateralized neu-
rotransmitter receptor distributions and mitochondrial 
profiles—that support functional hemispheric specializa-
tion (Labache et  al., 2025). Investigating how these 
network-level rebalancings relate to functional special-
ization in aging may yield key insights into both the plas-
ticity and vulnerability of the aging brain.

While functional connectivity gradients offer a parsi-
monious framework to capture macroscale cortical orga-
nization and have shown strong correspondence with 
known functional hierarchies (Bethlehem et  al., 2020; 
Margulies et al., 2016), they should be interpreted cau-
tiously as non-causal indicators of cognitive architecture. 
As recently pointed out (Herbet & Duffau, 2020), func-
tional connectivity lacks the causal specificity of tech-
niques such as direct electrostimulation or lesion-based 
approaches, and may not straightforwardly reflect the 
underlying cognitive processes. In this context, our use 
of the principal gradient aims to describe large-scale 
shifts in functional integration across hemispheres rather 
than to assign direct cognitive functions to specific 
regions. These gradient-derived metrics are best viewed 

as descriptive tools that complement (Labache, Ge, 
et  al., 2023), rather than replace, task-based or causal 
mapping approaches.

The human brain typically exhibits marked left–right 
asymmetries, especially in perisylvian regions involved in 
language. While genetics play a role in shaping these 
asymmetries, their heritability appears limited (under 
30% in adults; (Kong et al., 2018; Sha et al., 2021)), sug-
gesting a major influence of environmental and experien-
tial factors. Our results, showing a shift toward greater 
leftward asymmetry in multimodal language-and-memory 
regions (Cluster 2) and a bilateralization of classically left-
lateralized regions (Cluster 1), may reflect such long-term 
environmental shaping, especially from midlife onward. 
This supports a two-phase developmental model: an 
early, genetically guided trajectory followed by a pro-
longed experience-sensitive period in heteromodal 
regions (Dong et  al., 2024; Labache, Ge, et  al., 2023). 
These age-related shifts in asymmetry may thus be mod-
ulated by midlife experiences, lifestyle, and sensory 
inputs, particularly hearing. Recent evidence, however, 
suggests that the relationship between hearing loss and 
dementia may be indirect, potentially mediated by 
reduced social engagement rather than representing a 
direct causal link (Ishak et al., 2025; Sarant et al., 2023). 
Age-related sensory degradation remains a plausible 
contributor to cortical reorganization, as supported by 
observed functional changes in the auditory cortex during 
aging (Huang et al., 2023; Profant et al., 2015; Schulte 
et al., 2020). Sensory degradation, such as age-related 
hearing loss, is known to drive neural reconfigurations 
(Huang et al., 2023; Schulte et al., 2020), and has been 
identified as a major modifiable risk factor for dementia 
(Livingston et al., 2020). Given the coupling between sen-
sory input and functional asymmetry (Hesling et al., 2019; 
Hugdahl & Westerhausen, 2016; Van der Haegen et al., 
2016), our findings underscore the need to investigate 
how bottom-up sensory factors might interact with age-
related cortical reorganization, potentially contributing to 
the dual mechanism of hemispheric change we report.

Several methodological considerations and potential 
biases require discussion. Our study statistically con-
trolled for gender, and prior work has highlighted gender-
based disparities in language-related functional 
connectivity (Roger et al., 2022) and hemispheric asym-
metries (Liang et al., 2021). However, inter-individual vari-
ability in network organization may exceed these 
group-level effects. Future research should, therefore, 
adopt subject-specific, data-driven approaches to iden-
tify language networks, as advocated by Fedorenko et al. 
(2010), to account for heterogeneity in lateralization pat-
terns, rather than assuming a uniform network architec-
ture across individuals. This will be particularly important 
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in aging populations, where both individual variability and 
sex-related effects may interact and shape the trajecto-
ries of hemispheric specialization. Moreover, our study 
predominantly included participants from WEIRD (West-
ern, Educated, Industrialized, Rich, and Democratic) 
societies. Considering that most of the global population 
does not fit within this category (Henrich et al., 2010), it 
would be beneficial to replicate these findings in more 
diverse populations, considering the importance of cul-
tural diversity in research. Resting-state functional MRI 
has gained popularity due to its strong association with 
task-based fMRI activations (Cole et al., 2014, 2016) and 
ease of acquisition, rendering it a valuable proxy for cap-
turing functional neuronal processes. Nevertheless, the 
strength of hemispheric specialization for language 
depends on multiple factors, particularly the nature of the 
task (Bradshaw et al., 2017; Labache et al., 2019). Hence, 
conducting an additional study encompassing a diverse 
array of language-related functional tasks is essential to 
validate the consistency of the trends observed in our 
resting-state functional data. Open fMRI databases ded-
icated to language, such as InLang (Roger et al., 2022), 
could facilitate such investigations. However, the data-
bases available to date only sometimes include a wide 
age range, which could limit insights into older adults. 
Finally, longitudinal data are imperative for providing con-
clusive evidence regarding evolutionary trajectories 
throughout the lifespan and their cognitive implications. 
The STAC-r model (revised Scaffolding Theory of Aging 
and Cognition model) emphasizes the importance of 
examining cognitive changes within individuals 
(Reuter-Lorenz & Park, 2014). This approach helps distin-
guish between mechanisms that maintain brain integrity 
and compensatory processes. Both mechanisms are 
crucial for preserving cognition in older adults, as noted 
by Reuter-Lorenz and Park (2014). However, the current 
scarcity of extensive longitudinal cohorts, spanning both 
older and younger adults, hinders the identification of 
features predictive of future brain function and cognitive 
preservation (Doucet et al., 2022). It would also be import-
ant to extend the study to cohorts with mild cognitive 
impairment (MCI) and related conditions, which is crucial 
for assessing the specificity of the observed effects and 
discerning trends across different conditions.

In summary, this study provides novel evidence that 
age-related changes in hemispheric specialization for 
language follow a dual mechanism: a shift toward 
increased leftward asymmetry in multimodal language-
and-memory regions, and a simultaneous bilateralization 
of classically left-lateralized regions. By integrating func-
tional gradients, structural asymmetries, and behavioral 
measures across a large adult lifespan sample, our find-
ings reveal how aging reshapes the brain’s intrinsic lan-

guage architecture in ways that are linked to cognitive 
performance. These insights refine current models of 
cognitive aging, highlight the importance of midlife tran-
sitions, and lay groundwork for personalized approaches 
to language-based interventions in aging populations.
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