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ABSTRACT

Aging is accompanied by changes in brain architecture that alter the lateralization of functional networks. In this study,
we examined how hemispheric specialization changes across the adult lifespan by analyzing resting-state fMRI and
structural MRI data from 728 typical adults aged 18 to 88 years. Using the Language-and-Memory Network atlas, we
quantified regional asymmetries in functional connectivity along the cortex’s principal gradient, and normalized
regional volumes across 37 bilateral regions. We identified two distinct age-related asymmetry trajectories: one pat-
tern revealed a bilateralization of language-dominant regions, while the other showed increasing leftward specializa-
tion in multimodal regions associated with memory and language. These opposing patterns emerged around midlife
and were linked to performance in language production tasks. By integrating connectivity gradients, structural asym-
metries, and behavioral data, our findings provide new evidence for a dual mechanism reshaping functional brain
lateralization with age and demonstrate the utility of resting-state metrics in tracking these shifts.
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1. INTRODUCTION showing perisylvian asymmetries by 26 gestational
weeks (Kasprian et al., 2011), and become increasingly
pronounced during development (Abu-Rustum et al.,
2013; Kong et al., 2018).

Language lateralization, a fundamental characteristic
of human brain organization (Guntirkin & Ocklenburg,

2017), traditionally emphasizes the left hemisphere’s

The human brain exhibits marked hemispheric special-
ization, translated by differences in structure and function
between the left and right hemispheres, which underpin
key cognitive abilities such as language (Hervé et al.,
2013). While structural asymmetries refer to anatomical
differences (e.g., in cortical thickness or regional volume),

functional lateralization describes the unequal distribu-
tion of cognitive functions, such as language processing,
across hemispheres. Both forms of asymmetry emerge
early in life, as evidenced by prenatal imaging studies

dominance for core language functions (Tzourio-Mazoyer
et al.,, 2017). However, neuroimaging has revealed that
language processing engages a broader set of regions
beyond the classical Broca’s and Wernicke’s areas.
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These include transmodal associative hubs that support
the integration of linguistic, mnemonic, and executive
information (Braga et al., 2020; Labache et al., 2019,
2020; Roger et al., 2022; Salvo et al., 2024). This extended
language network includes areas in the anterior temporal
lobe, medial frontal cortex, and posterior cingulate, as
well as subcortical and cerebellar structures (Wolna et al.,
2025), forming a distributed, functionally integrated
system.

Several approaches have been used to define the
architecture of the language network. A key distinction
lies between group-level averaging and individual-subject
functional localization. Fedorenko and colleagues’ work
demonstrates that language-selective areas can be iden-
tified with high reliability across individuals using dedi-
cated language localizers (Fedorenko & Thompson-Schill,
2014; Fedorenko et al., 2010). More recently, individual-
ized functional connectomics has enabled the identifica-
tion of the language network even in resting-state and
non-related task data (Shain & Fedorenko, 2025). These
efforts culminated in a probabilistic atlas of the language
network from over 800 individuals (Lipkin et al., 2022),
highlighting robust left-lateralized frontotemporal pat-
terns comparable with previous work (Labache et al.,
2019) and meta-analysis (Price, 2012).

Despite advances in mapping the language connec-
tome, age-related changes in functional lateralization
remain poorly understood (Baciu & Roger, 2024). While
some studies suggest a decline in lateralization with
aging (Festini et al., 2018), others report compensatory
bilateralization or preserved asymmetries in certain
regions (Turner & Spreng, 2015). Moreover, language lat-
eralization may evolve differently across subcomponents
of the language system, especially in regions supporting
multimodal integration or memory (Roger et al., 2022).

To address this gap, we investigate how functional
asymmetries in the extended language network evolve
across the adult lifespan. We use resting-state fMRI to
derive individual-level measures of lateralization. Resting-
state functional connectivity reliably reflects the architec-
ture of task-based language networks (Braga et al., 2020;
Cole et al., 2014, 2016; Ji et al., 2019) and provides a
window into intrinsic brain organization. Our focus is on
the principal gradient of connectivity (G1), a macroscale
functional gradient that organizes the cortex from uni-
modal to heteromodal regions (Margulies et al., 2016).
Prior work has shown that G1 differs between hemi-
spheres and correlates with language dominance
(Labache, Ge, et al., 2023; Margulies et al., 2016).

The goal of this study is to elucidate the mechanisms
by which age-related changes in brain asymmetry impact
language processing and cognitive functions. Our inno-
vative approach combines the analysis of resting-state

functional connectivity (macroscale functional gradient
G1) with advanced statistical modeling to provide a com-
prehensive view of how the aging brain adapts its func-
tionalarchitecture. WeoptedfortheLanguage-and-Memory
Network due to its comprehensive ability to capture the
nuanced dynamics of language in conjunction with other
cognitive processes (Roger et al., 2020). The Language-
and-Memory Network integrates regions specialized in
language processing with areas concurrently involved in
language and advanced cognitive functions, such as
memory and executive processes. Importantly, these
heteromodal regions may undergo significant functional
changes with aging. To model the functional trajectories
over an age range from 18 to 88 years, we applied the
Generalized Additive Mixed Models (GAMMs) technique,
which has been previously used in structural MRI studies
(Roe et al.,, 2021, 2023). This allowed us to classify
Language-and-Memory Network regions based on their
asymmetry patterns at rest throughout normal aging.
Furthermore, we also explored how these asymmetry
changes were related to cognitive performance mea-
sured during various language tasks. To this end, we
used Canonical Correlation Analysis (CCA) to assess how
age impacted asymmetries in the language network
across multimodal data, including anatomy, function, and
cognitive performances.

The study’s findings will advance our understanding of
how normal aging impacts complex brain networks. This
research aligns with the rising global emphasis on gero-
science, which aims to elucidate the biological mecha-
nisms of aging and foster strategies for maintaining
health in older adults. By identifying potential biomarkers
for early detection of age-related cognitive decline, it
supports the development of targeted interventions to
preserve or improve cognitive health. It may pave the way
for personalized neurorehabilitation approaches by pro-
viding valuable insights into individual differences in brain
asymmetry and cognitive function. Given the urgent need
to address cognitive decline and enhance cognitive lon-
gevity in an aging population, these insights are both
timely and crucial.

2. METHODS

2.1. Database demographics

The study sample comprised 3 datasets, accumulating
728 healthy adults (371 women) from 18 to 88 years old
(u =52.84 years, SD = 19.19 years, Fig. 1). Included par-
ticipants had resting-state (rs) fMRI and structural MRI
from a 3T scanner, meeting criteria of passing quality
checks (fmriprep QC reports) and exhibiting no confirmed
neurological or psychiatric pathologies.
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Age and behavioral performance stacked distributions. The behavioral tests assess various cognitive functions

associated with language: word production, lexical access/retrieval abilities (picture naming accuracy and tip of the tongue
ratio), and semantic and syntactic comprehension abilities (accuracy and reaction time). A description of the behavioral
variables is available as Supplementary Materials in the article by West et al. (2022). Reaction time and tip of the tongue
performance were inverted, so all scores close to zero represent worse performances. Stacked histograms for age and
MMSE include 728 participants. Language Production and Language Comprehension stacked histograms include 554
participants of the CamCAN database only due to a lack of behavioral data for other participants.

The larger sample, the Cambridge Centre for Ageing
and Neuroscience Project (Shafto et al., 2014) (CamCAN
Project: www.mrc-cbu.cam.ac.uk), included 627 partici-
pants (316 women). Structural MRI data were acquired
on a 3T Siemens TIM Trio scanner with a 32-channel
head coil, using a T1-weighted, 3D MPRAGE sequence
with the following parameters: repetition time (TR)/echo

time (TE)/inversion time (Tl) = 2250/2.99/900 ms, voxel
size = 1 mm isotropic, flip angle = 9°, field of view (FOV)
= 256 x 240 x 192 mm?, duration of acquisition: 4 min
32 s. For resting-state fMRI scans, participants rested
with their eyes closed for 8 min 40 s. Two hundred and
sixty-one brain volumes were acquired using a gradient
echo planar imaging sequence (EPI, 32 axial slices,
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3.7 mm thickness, TR=2.0's, TE = 30 ms, flip angle = 78°,
FOV = 192 x 192 mm?, voxel size = 3 x 3 x 4.44 mm?).
Further recruitment information and the acquisition
parameters have been described elsewhere (Taylor
et al.,, 2017). The sample mean age was 54.28 years
(SD = 18.61 years). Participants’ handedness was defined
based on the manual preference strength assessed with
the Edinburgh inventory (Oldfield, 1971): participants with
a score below 30 were considered left-handers (Hervé
et al.,, 2006; Papadatou-Pastou et al., 2020), right-
handers otherwise. The sample contained 56 left-handed
participants (32 women). CamCAN funding was provided
by the UK Biotechnology and Biological Sciences
Research Council (grant number BB/H008217/1), with
support from the UK Medical Research Council and the
University of Cambridge, UK.

The second sample was collected in Omaha, NE,
USA, and included 54 participants (31 women). The
acquisition parameters are fully described in Doucet et al.
(2022). Briefly, participants were scanned on a 3T Sie-
mens Prisma scanner using a 64-channel head coil.
Structural images were acquired using a T1-weighted, 3D
magnetization-prepared rapid gradient-echo (MPRAGE)
sequence with the following parameters: TR = 2400 ms,
TE =2.22 ms, FOV: 256 x 256 mm, matrix size: 320 x 320,
0.8 mm isotropic resolution, TI = 1000 ms, 8 degree-flip
angle, bandwidth = 220 Hz/Pixel, echo spacing = 7.5 ms,
in-plane acceleration GRAPPA (GeneRalized Autocali-
brating Partial Parallel Acquisition) factor 2, total acquisi-
tion time ~7 min. Participants also completed a
resting-state fMRI scan (eyes open). Scans were per-
formed using a multi-band T2* sequence with the follow-
ing acquisition parameters: TR = 800 ms, TE = 37 ms,
voxel size = 2 x 2 x 2 mm?®, echo spacing 0.58 ms, band-
width = 2290 Hz/Pixel, number of axial slices = 72, multi-
band acceleration factor = 8, 460 volumes. The sample
mean age was 44.13 years (SD = 19.07 years). Partici-
pants’ handedness was self-reported: the sample con-
tained seven left-handed participants (three women). The
Institutional Review Board for Research with Human
Subjects approved the study at Boys Town National
Research Hospital. Each participant provided written
informed consent and completed the same protocol.

The third sample was collected in Grenoble, France,
and included 47 participants (24 women). T1-weighted
high-resolution three-dimensional anatomical volumes
(T1TFE, 128 sagittal slices, 1.37 mm thickness,
FOV = 224 x 256 mm?, 0.8 mm isotropic resolution) were
acquired for each participant by using a whole-body 3T
MR Philips imager (Achieva 3.0 T TX Philips, Philips Med-
ical Systems, Best, NL) with a 32-channel head coil. For
resting-state fMRI scans, 400 volumes were acquired
using a gradient echo planar imaging sequence (FEEPI,

36 axial slices, 3.5 mm thickness, TR=2.0s, TE = 30 ms,
flip angle = 75°, FOV = 192 x 192 mm?, voxel size =
2 x 2 x 2 mm?d). Participants were asked to lie down in the
scanner with eyes open on a central cross for the dura-
tion of the acquisition period (13 min 20 s). The sample
mean age was 43.57 years (SD = 21.92 years). Partici-
pants’ handedness was self-reported: the sample con-
tained two left-handed participants (one woman). The
ethics committee of the Grenoble Alpes University Hospi-
tal approved data collection (CPP 09-CHUG-14; MS-
14-102).

The Supplementary Materials (Comparative Tables of
Database Acquisition Parameters section) provides com-
parative tables of database acquisition parameters.

We used the whole age range of the sample (n = 728,
18-88 years) to model the asymmetry trajectories further
throughout the lifespan. By merging the CamCAN cohort
with Grenoble and Omaha samples, we expanded our
age coverage from 18 to 88 years old, addressing the
lack of young adults in the CamCAN cohort (as depicted
in Fig. 1), and making the age distribution uniform, allow-
ing a more reliable analysis.

Although the three datasets were acquired on different
MRI scanners with varying acquisition parameters, sev-
eral precautions were taken to ensure the validity of com-
bining them into a unified analysis. First, all imaging data
were preprocessed using the same standardized pipeline
(fmriprep), including spatial normalization to MNI space
and uniform regression of nuisance variables. Second,
site was explicitly modeled as a covariate of no interest in
all statistical analyses using Generalized Additive Mixed
Models, a flexible framework well suited for accounting
for both linear and nonlinear inter-site differences (Roe
et al., 2021, 2023). Third, a validation analysis comparing
asymmetry trajectory classifications between the
CamCAN-only sample and the full combined sample
revealed a high Serensen-Dice index (SDI = 0.92; Dice,
1945; T. Sgrensen, 1948), confirming the robustness and
reproducibility of the results across cohorts. Furthermore,
combining datasets from different institutions enhances
the generalizability of findings (Thompson et al., 2020).
Large-scale consortia such as ENIGMA, which aggregate
data across numerous scanners and sites, have demon-
strated the value and feasibility of such approaches
(Thompson et al., 2020). Importantly, this study uses a
cross-sectional design, and thus age-related patterns
reflect inter-individual differences rather than within-
subject longitudinal change.

2.2. Cognitive assessment of participants

For all 728 participants, we checked the Mini Mental
State Examination (MMSE) scores to ensure that the
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general cognitive functioning of our sample remained
within the expected range (Q, = 28, Q, = 30).

Among the three cohorts in our study, only the Cam-
CAN cohort underwent an extensive set of behavioral
assessments, resulting in cognitive data available for a
specific sub-sample of 554 participants. These assess-
ments, conducted outside the MRI scanner, are detailed
in the literature (Samu et al., 2017; Taylor et al., 2017). We
limited our analyses to language skill assessments only
(Fig. 1). We chose language-related measures because of
their effectiveness in assessing diverse language-related
aspects, encompassing word production, lexical access,
and word retrieval (evaluated via picture naming accu-
racy and the tip-of-the-tongue ratio), as well as the
understanding of semantics and syntax (measured
through accuracy and reaction time). Further comprehen-
sive descriptions of these behavioral variables are avail-
able in the Supplementary Materials provided by West
et al. (2022).

2.3. MRI data preprocessing

The neuroimaging data were formatted following the
BIDS standard (Gorgolewski et al., 2016; Roger et al.,
2020) (Brain Imaging Data Structure—http://bids.neuro-
imaging.io/) and then preprocessed using the fMRIPrep
software (https://fmriprep.org/en/stable/; Esteban et al.,
2019, 2020). fMRIPrep version 21.0.2 was run using its
default processing pipeline in a containerized environ-
ment with singularity, ensuring computational reproduc-
ibility. The T1w preprocessing included skull stripping,
tissue segmentation, and spatial normalization. T1-
weighted images were corrected for intensity non-
uniformity  using N4BiasFieldCorrection (ANTSs),
skull-stripped with antsBrainExtraction.sh, and spatially
normalized to the ICBM 152 Nonlinear Asymmetrical
template (MNI152NLin2009cAsym) using nonlinear regis-
tration with ANTs. Preprocessing of the rs-fMRI data fol-
lowed the consensus steps for functional images,
including motion correction, slice timing correction, sus-
ceptibility distortion correction, coregistration, and spa-
tial normalization. The rs-fMRI images were motion
corrected using FSL's MCFLIRT, slice-time corrected
using AFNI’s 3dTshift, and coregistered to the T1w using
boundary-based registration (bbregister). Susceptibility
distortion correction was applied using fieldmap-less
correction with SyN in ANTs. Functional images were
then normalized to MNI space using the same ANTs
transformations. The data were represented in the Mon-
treal Neurological Institute (MNI) volumetric space.
Finally, time series were extracted for each homotopic
region of interest (described in the following subsection)
using Nilearn (https://nilearn.github.io/) with nuisance

parameter regression. Before time series extraction, data
were spatially smoothed with a 6 mm FWHM Gaussian
kernel and temporally filtered (0.01-0.1 Hz) to remove
low-frequency drift and high-frequency noise. Confound-
ing regression included cerebrospinal fluid and white
matter signals and translation and rotation parameters
for x, y, and z directions.

2.4. Language-and-memory network statistics

Our statistical analyses were based on the Language-
and-Memory Network atlas, an extended language net-
work encompassing language-specific areas and related
memory regions (Roger et al.,, 2020). Briefly, the
Language-and-Memory Network comprises 37 homo-
topic regions of interest. Among these 10 regions uniquely
dedicated to the core supramodal language network
(Labache et al., 2019), 19 supporting episodic memory
(Spaniol et al., 2009) and 8 regions underpinning both
language and episodic memory processes. The core lan-
guage network corresponded to a set of heteromodal
brain regions significantly involved, leftward asymmetri-
cal across three language contrasts (listening to, reading,
and producing sentences), and functionally connected
(Labache et al., 2019). This functional asymmetry aligns
with longstanding evidence of anatomical asymmetries in
perisylvian cortex that are thought to form a structural
basis for the evolution and development of language-
related circuits (Hutsler, 2003; Kong et al., 2022; Meyer
et al., 2014; Toga & Thompson, 2003; Tzourio-Mazoyer
et al., 2018).

These anatomical asymmetries, including the early
developing leftward expansion of the planum temporale
and superior temporal sulcus, are evident from the 23
gestational week (Tzourio-Mazoyer et al., 2020) and are
believed to result from developmental gradients in cortical
neurogenesis and radial migration (Geschwind & Rakic,
2013; Rakic, 1988). While such asymmetries likely scaf-
fold the emergence of left-lateralized language function
(Achorn et al., 2025), they do not directly account for the
specialization of higher-order linguistic processes. Recent
neurocognitive models (Fedorenko & Thompson-Schill,
2014; Matchin & Hickok, 2020) emphasize that early per-
ceptual and phonological operations localize to these
structurally asymmetric regions, whereas syntactic and
combinatorial computations are distributed across func-
tionally lateralized fronto-temporal circuits. This dissocia-
tion supports the view that structural and functional
asymmetries, although developmentally related, subserve
distinct stages of language processing.

Furthermore, the memory network was underpinned
by areas that demonstrated strong activation patterns
connected to episodic memory processes, such as
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encoding, effective recovery, and reminiscence. Figure 2
shows the Language-and-Memory Network in a brain
rendering, and Supplementary Table S1 lists all the
Language-and-Memory Network regions. It should be
noted that the language atlas was based on the AICHA
atlas, a functional brain homotopic atlas optimized for
studying functional brain asymmetries (Joliot et al., 2015).

We computed two features characterizing the high-
order Language-and-Memory Network regions (Roger
et al., 2020) from the preprocessed neuroimaging data:
the normalized volume and the first functional gradient
(G1) reflecting the macroscale functional organization of
the cortex (Margulies et al., 2016). The first gradient cap-
tures the most variance of the correlations matrices

“T2.3 STS3
y STS2
STS1
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T2_3 precs
SMG7 ! T1 4 |f22

. Language

2.1
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(20%, 22%, and 19% for CamCAN, Omaha’s, and Greno-
ble’s cohorts, respectively). It has been previously shown
to accurately reflect the lateralization of the language net-
work (Labache, Ge, et al., 2023).

2.5. Normalized volume

Tissue segmentation was performed on the prepro-
cessed T1w using the FreeSurfer pipeline (Version 6.0.0;
CentOS Linux 6.10.i386; Fischl et al., 2004). Briefly, the
FreeSurfer segmentation process included the segmen-
tation of the subcortical white matter and deep gray
matter volumetric structures, intensity normalization, tes-
sellation of the gray matter white matter boundary,

F1_2-

Right

. Episodic Memory . Language and Memory

Fig. 2. Locations of the 37 regions from the Language-and-Memory Network atlas in the left hemisphere and their
homotopic counterparts in the right hemisphere (Roger et al., 2020). On the left: lateral view of the left (top row) and right
(bottom row) hemisphere. On the right: medial view of the left (top row) and right (bottom row) hemisphere. The atlas is
composed of 74 homotopic ROIs (37 in each hemisphere) reported by 2 task-fMRI studies, 1 cross-sectional study for
language (Labache et al., 2019), and 1 meta-analysis for memory (Spaniol et al., 2009) and adapted to the atlas of intrinsic
connectivity of homotopic areas coordinates (Joliot et al., 2015). Regions are rendered onto the 3D anatomical templates
of the white matter surface of the left hemisphere in the MNI space with Surf Ice software (www.nitrc.org/projects/surfice/).
Color code: purple, regions involved in language; blue, regions involved in episodic memory (encoding and retrieval);
brown, regions involved in both language and memory. The anterior insula (3) (INSag) is not visible on this render. See
Supplementary Table S1 for the correspondences between the abbreviations and the full names of the Language-and-
Memory Network regions.
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automated topology correction, and surface deformation
following intensity gradients to optimally place the gray/
white and gray/cerebrospinal fluid borders at the location
where the greatest shift in intensity defines the transition
to the other tissue class. Structural volumes were nor-
malized to total intracranial volume. Normalized volumes
were extracted for each of the Language-and-Memory
Network regions.

2.6. Connectivity embedding

Each participant’s values were obtained for the first func-
tional gradient (G1). The gradients reflect participant con-
nectivity matrices, reduced in their dimensionality through
the approach of Margulies et al. (2016). Functional gradi-
ents reflect the topographical organization of the cortex
in terms of sensory integration flow, as described by
Mesulam (1998). Gradients were computed using Python
(Python version 3.8.10) and the BrainSpace library (Vos
de Wael et al., 2020) (Python package version 0.1.3). Gra-
dients computed at the regional and vertex levels per-
formed similarly (Vos de Wael et al., 2020).

Average region-level functional connectivity matrices
were generated for each individual across the entire cor-
tex (i.e., 384 AICHA brain regions). Consistent with prior
work, each region’s top 10% connections were retained,
and other elements in the matrix were set to 0 to enforce
sparsity (Dong et al., 2021; Margulies et al., 2016). The
normalized angle distance between any two rows of a
matrix was calculated to obtain a symmetrical similarity
matrix. Diffusion map embedding (Coifman & Lafon,
2006; Coifman et al., 2005; Lafon & Lee, 2006) was imple-
mented on the similarity matrix to derive the first gradi-
ent. Note that the individual-level gradients were aligned
using Procrustes rotation (N,__. = 10) to the corre-
sponding group-level gradient. This alignment procedure
was used to improve the similarity of the individual-level
gradients to those from the literature. Min-max normal-
ization (0-100) was performed at the individual level for
the whole brain (Gonzalez Alam et al., 2022).

Gradient asymmetry was then computed for each par-
ticipant and region. For a given region, gradient asymme-
try corresponded to the difference between the
normalized gradient value in the left hemisphere minus
the gradient values in the right hemisphere. A positive
gradient asymmetry value meant a leftward asymmetry; a
negative value meant a rightward asymmetry.

2.7. Statistical analyses

Statistical analysis was performed using R (R version
4.2.2; R Core Team, 2021). Data wrangling was per-
formed using the R library dplyr (R package version

1.0.10; Wickham et al., 2023). Graphs were realized using
the R library ggplot2 (R package version 3.4.2; Wickham,
2016). Brain visualizations were realized using Surf Ice
(NITRC: Surf Ice: Tool/Resource Info, n.d.), and were
made reproducible following guidelines to generate pro-
grammatic neuroimaging visualizations (Chopra et al.,
2023).

2.7.1. Modeling gradient asymmetry trajectories
throughout life

For each region of the Language-and-Memory Network,
we used factor-smooth Generalized Additive Mixed Mod-
els (GAMMs, as implemented in the R library gamm4; R
package version 0.2-6; Wood & Scheipl, 2020) to fit a
smooth gradient trajectory for age per hemisphere (Roe
et al., 2021, 2023) and to assess the smooth interaction
between Hemisphere x Age within the clusters (see clus-
ters definition below). Hemisphere was included as a
fixed effect, while sex and site were treated as covariates
of no interest. A random intercept for each subject was
also included. GAMMs leverage smooth functions to
model the non-linear trajectories of mean levels across
individuals, providing robust estimates that can be
applied to cross-sectional and longitudinal cognitive data
(3. Serensen et al., 2021). GAMMs were implemented
using splines, a series of polynomial functions joined
together at specific points, known as knots. The splines
allow the smooth function to adapt its shape flexibly to
the underlying pattern in the data across the range of the
predictor variable. This connection allows for the model-
ing of complex, non-linear relationships piecewise while
maintaining continuity and smoothness across the func-
tion. To minimize overfitting, the number of knots was
constrained to be low (k = 6). The significance of the
smooth HemispherexAge interaction was assessed by
testing for a difference in the smooth term of age between
hemispheres. We applied a false discovery rate correc-
tion (FDR; Benjamini & Yekutieli, 2001) to control for the
number of tests conducted. Lastly, we used the linear
predictor matrix of the GAMMSs to obtain asymmetry tra-
jectories underlying the interaction HemispherexAge and
their confidence intervals. These were computed as the
difference between zero-centered (i.e., demeaned) hemi-
spheric age trajectories.

2.7.2. Classification of age-asymmetry trajectories

To classify the regions of the Language-and-Memory Net-
work found significant (after applying the FDR correction)
according to their functional asymmetry skewness profile
(i-e., increasing leftward asymmetry from baseline, decreas-
ing leftward asymmetry, or stabilizing asymmetry with age),
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we computed a dissimilarity matrix (sum of square differ-
ences) between all trajectories. We applied the Partition
Around Medoids algorithm (R library cluster; R package
version 2.1.4; Maechler et al., 2022) to identify clusters of
regions sharing identical lifespan trajectories. Clustering
solutions from two to seven were considered, and the
mean silhouette width determined the optimal solution.

2.7.3. Canonical correlation analysis to assess
brain-behavior associations

For each cluster, we assessed the linear relationship
between the gradient asymmetry trajectories of the
Language-and-Memory Network, their normalized vol-
ume, and cognitive language performance using
permutation-based Canonical Correlation Analyses (CCA;
Wang et al., 2020) inference. CCA is a multivariate statis-
tical method identifying linear combinations of two sets of
variables that correlate maximally. CCA reveals modes of
joint variation, shedding light on the relationship between
cognitive language performance (behavioral set), the
lifespan trajectories of sensory integration flow asymme-
try, and its underlying anatomy (brain set). The CCA
results with a set of m mutually uncorrelated (i.e., orthog-
onal) modes. Each mode captures a unique fraction of
the multivariate brain and behavior covariation that is not
explained by any of the other m—1 modes. To assess sta-
tistical significance, we determined the robustness of
each estimated CCA mode using permutation testing
with 1,000 permutations. This test computes p-values to
assess the null hypothesis of no correlation between
components, adhering to the resampling method devel-
oped by Winker et al. (2020). p-values were controlled
over family-wise error rate (FWER; FWER corrected p-
values are denoted p,.,,.,), which is more appropriate than
the FDR correction when measuring the significant
canonical modes (Winkler et al., 2020).

Before conducting the CCA, we summarized the high-
dimensional set of brain variables (gradient and normal-
ized volume asymmetries) using principal component
analysis (PCA; Wang et al., 2020). We retained compo-
nents corresponding to the elbow point in the curve, rep-
resenting the variance explained by each successive
principal component. This was achieved using the R
library PCAtools (R package version 2.5.15; Blighe & Lun,
2021). These retained principal components were then
designated as the brain set for the CCA. Finally, we resid-
ualized the two variable sets (brain and behavior sets) to
remove the influence of sex, age, and MMSE before exe-
cuting the CCA.

The CCA has only been realized on the 554 partici-
pants of the CamCAN database due to a lack of behav-
ioral data for other participants.

3. RESULTS

3.1. Evolution of hemispheric gradient asymmetries

We investigated age-related changes in the asymmetry of
the functional connectivity architecture asymmetry within
the extended Language-and-Memory Network (Fig. 2;
Roger et al., 2020) across the adult lifespan using ana-
tomical and resting-state fMRI data acquired at 3T
(n = 728, aged 18 to 88 years), combining 3 databases
(Camcan, Omaha, and Grenoble sample). Demographics
are available in the Methods section (Database Demo-
graphics).

As described by Labache, Ge, et al. (2023), we took
advantage of recent mathematical modeling of the cor-
tex’s functional topography, as Margulies et al. (2016)
proposed. First, functional connectivity —matrices
(884 x 384 AICHA parcels; Joliot et al., 2015) across the
full sample were decomposed into components that cap-
ture the maximum variance in connectivity. Consistent
with prior work (Dong et al., 2021; Margulies et al., 2016),
diffusion map embedding (Coifman & Lafon, 2006) was
used to reduce the dimensionality of the connectivity
data through the nonlinear projection of the voxels into
an embedding space. The resulting functional compo-
nents or manifolds, termed gradients, are ordered by the
variance they explain in the initial functional connectivity
matrix. The present analysis focused on the first gradient
accounting on average for 20% of the total variance in
cortical connectivity (respectively, 22% for the sample
collected in Omaha, 20% for the CamCAN database, and
19% for the sample collected in Grenoble). In line with
prior work (Bernhardt et al., 2022; Hong et al., 2020;
Margulies et al., 2016; Mckeown et al., 2020), one end of
the principal gradient of connectivity was anchored in
unimodal regions, while the other end encompassed
broad expanses of the association cortex.

The Language-and-Memory Network corresponds to
37 homotopic regions of interest (Roger et al., 2020)
(Fig. 2), either specialized for language (Labache et al.,
2019, 2020), episodic memory (Spaniol et al., 2009), or
both. Each region is described by its gradient asymmetry
value. To identify regions with changing asymmetry
across the lifespan, and as described by Roe et al. (2021,
2023), we used a factor-smooth Generalized Additive
Mixed Model with Hemisphere x Age (i.e., age-related
change in asymmetry) as the effect of interest.

Gradient significant age-related changes in asymme-
try were found in 25 of the 37 regions of the Language-
and-Memory Network (68 % ofthe Language-and-Memory
Network regions, all p_, < 0.024, Fig. 3). On the lateral
surface of the temporal lobe, significant regions were
localized alongside the superior temporal sulcus (STS1,
STS2, STS3), extending to the superior temporal gyrus
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Fig. 3. Gradient lifespan trajectories of Language-and-Memory regions. Each region’s graph shows the lifespan trajectory
of the left (in red) and the right (in green) hemispheres and their asymmetry (in blue; positive values indicate leftward
asymmetries, negative ones indicate rightward asymmetries). Regions are plotted in alphabetical order. Trajectories were
fitted using the generalized additive mixed models. Significant regions (p,,, < 0.05) are marked with a star (*) in the top
right corner. Data are residualized for sex, site, and random subject intercepts. Ribbons depict the standard error of the
mean. The location of regions is shown in Figure 2. Correspondences between the abbreviations and the full names of a
region are given in Supplementary Table S1.
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dorsally (T1_4) and joining the posterior part of the infe-
rior temporal gyrus (T3_4) and ventrally, the fusiform
gyrus (FUS4). Advancing toward the parietal lobe, the
supramarginal gyrus (SMG?7), the inferior parietal gyrus
(P2), and the intraparietal sulcus (ips3) also showed sig-
nificant Hemisphere x Age interactions. On the lateral
surface of the left frontal lobe, the regions showing a sig-
nificant Hemisphere x Age interaction covered the pars
triangularis part of the inferior frontal gyrus (F3t), as well
as the pars orbitalis (F202), the junction of the middle
frontal gyrus (F2_1) with the precentral sulcus (prec1, and
precd). The superior frontal sulcus (f1_2), the medial part
of the superior frontal gyrus (F1_2), and the pre-superior
motor areas (SMA2 and SMA3) were also part of these
areas in the frontal lobe. Three regions were located
within the anterior insula (INSa2, INSa3, and INSa4),
while three others were located along the hippocampal
(HIPP1 and HIPP2) and parahippocampal gyri (pHIPP2).
The posterior cingulum (CINGp2) was selected in the
posterior medial wall using this approach. The 12 non-
significant regions (all p,, > 0.174) were localized in the
posterior part of the temporal (STS4, T2_3, T2_4, and
T3_3) and the parietal lobes (AG1, AG2, and ips2), the
anterior cingulate (CINGa2), the amygdala (AMYG), and
the inferior frontal gyrus (F3_0O1, F3_02) and sulcus
(f2_2). See Supplementary Table S2 for a description of
the asymmetry in early and late life for the 25 regions
showing significant age-related changes in gradient
asymmetry.

3.2. Clustering of asymmetry trajectories

To investigate the asymmetry trajectories associated with
the HemispherexAge interaction, we conducted cluster-
ing on the 25 significant regions within the Language-
and-Memory Network to pinpoint areas displaying similar
patterns of gradient asymmetry changes throughout
adulthood (Fig. 3). The Partition Around Medoids algo-
rithm identified two optimal partitions based on the mean
silhouette width of 0.73. Including the regions that did not
exhibit significant changes in gradient asymmetries over
the lifespan, the Language-and-Memory Network regions
are grouped into three distinct clusters (Fig. 4A).

The first cluster, highlighted in light blue in Figure 4
and referenced similarly throughout the paper, comprised
regions that showed an average increase in their gradient
values in the right hemisphere (Fig. 4D). These regions
transitioned to a slightly rightward asymmetrical state
with aging (smoothggyo = -1.72), whereas they exhibited
leftward asymmetry in earlier life stages (smooth,,
o = 9.40, negative slope from positive intercept, Fig. 4B).
The right hemisphere heteromodality increased signifi-
cantly with aging, while the left hemisphere capacity
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remained stable. Within this cluster, 43% of the regions
were dedicated to processing language, while 57% were
multimodal, handling language and memory functions
(Fig. 4C). Cluster 1 regions are mapped onto the frontal,
parietal, temporal, limbic cortices, and insula.

The second cluster, highlighted in light orange in Fig-
ure 4 and referenced similarly throughout the paper, com-
prised regions that showed an average increase in their
gradient values in the left hemisphere (Fig. 4E). These
regions transitioned to a leftward asymmetry state with
aging (smoothggyo = 12.23), whereas they exhibited right-
ward asymmetry organization in earlier life stages
(smooth,, yo = -3.77, positive slope from negative inter-
cept, Fig. 4B). The left hemisphere heteromodal special-
ization increased significantly with aging, while the right
hemisphere capacity remained stable. Within this cluster,
9% of the regions were dedicated to processing lan-
guage, while 91% were multimodal, handling language
and memory functions (Fig. 4C). Cluster 2 regions are
mapped onto the frontal, temporal, and limbic cortices.

The last cluster (gray in Fig. 4), named “No change,”
regrouped the 12 non-significant regions that showed no
significant changes in their hemispheric asymmetries
throughout the lifespan. This cluster encompasses 25%
of regions exclusively associated with language function
and 75% of the regions involved in language and mem-
ory processes.

The trajectories of Clusters 1 and 2 indicated that the
asymmetry switch occurred at 52.6 years (Fig. 4B). From
this age onward, Cluster 2, which mainly encompasses
multimodal regions, became the dominant leftward
asymmetrical cluster. Its heteromodality in later life sur-
passed the early life heteromodality of Cluster 1. Mean-
while, Cluster 1 continued its decline toward a
symmetrical organization of information integration.

3.3. Multimodal brain-cognition association change
analysis

Finally, we examined the extent to which changes in func-
tional asymmetries among the two clusters are associated
with individual differences in language-related cognitive
performance across the adult lifespan. To gain a compre-
hensive understanding, our analysis also incorporated the
normalized volume of each region within the identified
clusters. This approach allowed us to identify a tripartite
relationship connecting anatomy, macroscale functional
brain organization, and cognitive performance across dif-
ferent ages. To achieve this, we used permutation-based
Canonical Correlation Analysis (CCA) inference (Wang
et al., 2020). CCA reveals modes of joint variation between
two sets of variables, resulting in a set of mutually uncor-
related modes. Each mode captures a portion of the
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Fig. 4. Patterns of language-related neurocognitive trajectories. (A) The 25 Language-and-Memory Network regions
associated with the two main clusters of change, categorized according to the k-medoids classification applied to the
Euclidean distance matrix derived from the age-related curves of asymmetry as modeled by the Generalized Additive
Mixed Model. Cluster 1, in blue, changes from left-sided dominant to bilateral. Cluster 2, in orange, changes from a
bilateral organization to a left-side dominance. See Figure 2 and Supplementary Table S1 for a description of the regions.
(B) Average trajectory curves of the 15t gradient asymmetries from 18 to 88 years old. The two main patterns of inverse
changes (Cluster 1 and Cluster 2) with age. The vertical line represents the intersection point between Cluster 1 and
Cluster 2: 52.55 years old, that is, the age at which the 15t gradient asymmetry trends reverse. Ribbons depict the standard
deviation. (C) The proportion of each cluster depends on the underlying cognitive processes: language or language and
memory. (D-E) Modeling of the average estimated 15t gradient parameter for each hemisphere (left and right) across ages
for Language-and-Memory Network regions belonging to Cluster 1 (D) and Cluster 2 (E). Ribbons depict the standard
deviation. The bilateralization of Cluster 1 with age is due to an increase of the 15t gradient values in the right hemisphere,
while the left hemisphere remains stable. The left-sided specialization of Cluster 2 with age is due to an increase of the 1st
gradient values in the left hemisphere, while the right hemisphere remains stable. This dual mechanism is mediated by an
overspecialization of the contralateral hemisphere with age, characterized by an increased capacity to integrate high-level
Language-and-Memory Network information.
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multivariate brain and behavior covariation. The CCA was
conducted between a set of brain variables (including gra-
dients and normalized volumes) and a set of cognitive
variables evaluating language performance (including
naming and tip of the tongue for language production and
accuracy and reaction time in language comprehension).
Language skill assessments are described in the Methods
section (Cognitive Assessment of Participants). Prior to
conducting CCA, we summarized the high-dimensional
set of brain variables using principal component analysis
(Wang et al., 2020) (PCA). The CCA has been performed
on the 554 participants of the CamCAN database only due
to a lack of behavioral data for other participants.

Cluster 1 - We first conducted a PCA on the brain set
variables (gradient and normalized volume asymmetries)
from the first cluster (Fig. 4A). This analysis indicated that
the 28 variables could be condensed into 4 principal
components, accounting for 49.79% of the total variance
in the brain set. The first component alone explained
26.75% of the total variance and opposed the volume
asymmetries of the dorsal language pathway regions to
those of the ventral pathway regions (Fig. 5A, left col-
umn). Positive loadings then indicated a leftward asym-
metry of the dorsal pathway, while negative loadings
indicated a rightward asymmetry of the ventral pathway.
The second component alone explained 12.15% of the
total variance. It opposed the volume asymmetries of the
dorsal language pathway regions to those of the ventral
pathway regions and the asymmetries of the first gradient
(Fig. 5A, left column). Positive loadings then indicated a
rightward asymmetry of the volume of the dorsal pathway
regions and a leftward asymmetry of the ventral pathway
as well as the gradient values. At the same time, negative
loadings indicated the opposite pattern.

The multimodal canonical correlation analysis on the
first cluster, which incorporated four brain metrics (princi-
pal components) and four behavioral metrics, revealed a
single significant canonical correlation linking anatomy,
function, and behavior (o, < 1 x 10%). We investigated
the CCA loadings for the brain set of variables, which
represent the contribution of each PCA component to the
significant canonical correlation and are referred to as the
“brain mode” hereafter. This brain mode accounted for
37.58% of the variance and primarily reflected the first
and second PCA components of the brain data set
(Fig. 5B, left column). Positive values of the brain mode
were associated with positive loading values for both the
first and second principal components. Specifically,
these positive values in the brain mode indicated a left-
ward asymmetry for all regions regarding gradient and
normalized volume in the dorsal language pathway
regions. Conversely, they represented a rightward asym-
metry in the ventral pathway regions. We analyzed the
CCA loadings for the behavioral set of variables, which
represent the contribution of each behavioral language
test to the significant canonical correlation and are
referred to as the “behavioral mode” hereafter. The
behavioral mode accounted for 39.47% of the variance
and primarily reflected the naming and tip of the tongue
tests (Fig. 5C, left column). Positive values of the behav-
ioral mode were associated with better performances in
language production. The correlation between the brain
and behavioral modes was 0.28, as depicted in Figure 6
(left panel). Improved language production abilities were
linked to a leftward asymmetry of the gradient value
within the Language-and-Memory Network regions of the
first cluster, a leftward asymmetry of the normalized vol-
ume for the dorsal language pathway regions, and a

»
>

Fig. 5. Brain—behavior association using canonical correlation analysis. (A) Biplot of the principal component analysis of
the regions belonging to Cluster 1 (n = 14, on the left) and Cluster 2 (n = 11, on the right). Each region was characterized
by its asymmetry values of the 15t gradient and normalized volume. The two principal components of Cluster 1 explained
38.89% of the total variance (Principal Component 1 = 26.74%, Principal Component 2 = 12.15%). The two principal
components of Cluster 2 explained 33.34% of the total variance (Principal Component 1 = 20.47%, Principal Component
2 =12.87%). For Cluster 1, the 15t principal component opposed the volume asymmetries of the dorsal language pathway
regions to the ventral semantic pathway regions. The 2" component opposed the symmetries of the 1t gradient to the
symmetries of the normalized volume. For Cluster 2, the 15t principal component opposed the asymmetry of mesial
regions versus the volume asymmetry of lateral regions. The 25¢ component coded for the symmetry of the 15t gradient,
specifically, the symmetry of the temporo-mesial memory-related regions: a larger value meant a larger symmetry. (B-C)
Overview of the canonical correlation analysis first modes. Only data from participants with all scores on the selected
language indicators were included in the analysis (n = 554; CamCAN cohort only). Sex, age, and general cognitive status
(MMSE) were entered as covariates. (B) First mode for brain variables. For Cluster 1, the brain mode explained 38%

of the variance. It is saturated by the first two components of the principal component analysis, mixing the multimodal
biomarkers included in the analysis (15t gradient and normalized volume). For Cluster 2, the brain mode explained 24% of
the variance. It is saturated by the first two components of the principal component analysis. (C) First mode of behavioral
variables. For Clusters 1 and 2, the behavioral mode explained 39% of the variance and was saturated by the language
production tasks involving lexical access and retrieval: naming and tip of the tongue. Results for Cluster 1 are framed in
light blue. Results for Cluster 2 are framed in orange.
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rightward asymmetry for the ventral language pathway
regions.

Cluster 2 - The principal components analysis on the
brain set variables (22 variables, gradient, and normalized
volume asymmetries) for the second cluster (Fig. 4A)
resulted in 6 principal components. Together, these prin-
cipal components explained 59.35% of the total variance
in the brain set. The first component alone explained
20.48% of the total variance and opposed the volume
asymmetries of the mesial regions to those of the lateral
side (Fig. 5A, right column). Positive loadings then indi-

cated a rightward asymmetry of the normalized volume of
the mesial regions and a leftward asymmetry of the lateral
regions. Negative loadings indicated the opposite pat-
tern. The second component alone explained 12.86% of
the total variance and captured the asymmetry of the gra-
dient, specifically, the asymmetry of the temporo-mesial
memory-related regions (Fig. 5A, right column). Positive
loadings indicated a rightward asymmetry of the gradient,
while negative loadings indicated a leftward asymmetry.
The multimodal canonical correlation analysis on the
second cluster, which incorporated six brain metrics
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Fig. 6. Relationship between changes in inter-hemispheric balances and their behavioral implications in a multimodal
perspective. The first brain and behavioral modes were significantly correlated for both clusters: r = 0.28, p < 1.103. The
significance of correlations between modes was assessed using permutation testing (n = 1000). Color code for age.

(principal components) and four behavioral metrics,
revealed a single significant canonical correlation linking
anatomy, function, and behavior (o, < 1 x 107%). This
brain mode accounted for 23.61% of the variance and
opposed the second component of the brain data set to
the first one (Fig. 5B, right column). Positive values of the
brain mode were associated with positive loading values
for the second component and negative values for the
first component. A positive brain mode value meant a
leftward asymmetry of the normalized volume of the
mesial regions, a rightward asymmetry of the lateral
regions, and a rightward asymmetry of the gradient. The
behavioral mode accounted for 39.04% of the variance
and, similarly to Cluster 1, primarily reflected the naming
and tip of the tongue tests (Fig. 5C, right column). The
correlation between the brain and behavioral modes was
0.28, as depicted in Figure 6 (right panel). Improved lan-
guage production abilities were linked to a rightward
asymmetry of the gradient value within the temporo-
mesial memory-related regions, a leftward asymmetry of
the normalized volume of the mesial regions, and a right-
ward asymmetry of the normalized volume of the lateral
regions.

4. DISCUSSION

Our study uncovers that functional asymmetry in the inte-
gration of high-level information plays a pivotal role in the
neural mechanisms underlying language processing and
capabilities. Trajectory modeling across the lifespan
revealed shifts in hemispheric dominance, underscoring
the dynamic nature of functional lateralization. These
changes in asymmetry are associated with the language
production challenges commonly seen in typical aging,
disputing the notion that increased engagement of the
contralateral hemisphere in older adults serves a com-
pensatory role. Instead, our findings align with the brain
maintenance theory, highlighting the importance of pre-

serving a youthful functional brain state for optimal cog-
nitive performance as individuals age. This study paves
the way for further exploration into the dynamic pro-
cesses by which the brain and cognition adapt through-
out the aging process.

We found that this dual mechanism of the Language-
and-Memory Network neurofunctional imbalance in inte-
grating complex, high-level information begins after age
50 years and intensifies over time (Fig. 4B). These find-
ings are consistent with previous functional studies
showing significant transitions in middle age (Hennessee
et al., 2022). They also align with the onset of structural
changes observed in healthy older adults regarding corti-
cal thickness asymmetry, showing an accelerated loss of
asymmetry after midlife (Fjell et al., 2010; Roe et al., 2021;
Vidal-Pifieiro et al., 2019). The reduction in structural
asymmetry is notably significant in higher-order cortex
and heteromodal regions, which may account for the
extensive reorganization observed in the functional orga-
nization of the Language-and-Memory Network regions.
None of these changes in asymmetry contributed to
maintaining language performance with age and were,
instead, linked to poorer performance. For Cluster 1 and
Cluster 2, the pattern observed in young adults was
related to more efficient language production (Fig. 6),
underlining the importance of specialization at all ages
for effective interhemispheric cooperation. Consequently,
the changes do not support the hypothesis of a compen-
satory phenomenon (Cabeza et al., 2018), preserving lan-
guage performance with age. On the contrary, it aligns
with the dedifferentiation theory of aging (Li et al., 2009;
Morcom & Friston, 2012; Morcom & Henson, 2018;
Reuter-Lorenz & Lustig, 2005) and the brain maintenance
theory (Nyberg, 2017; Nyberg et al., 2012), suggesting
that maintaining a (functional) youthful brain state is
essential to cognitive preservation as individuals age.
These findings further underscore Roe and colleagues’
insights in their recent investigation of age-related shifts
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in functional asymmetry during memory retrieval (Roe
et al., 2020).

Our results suggest that changes in language lateral-
ization across adulthood are not isolated phenomena but
are deeply embedded in a broader reorganization of the
brain’s functional architecture. This aligns with the con-
cept of “complementary lateralization,” where specializa-
tion for language in the left hemisphere is counterbalanced
by the right hemisphere’s engagement in non-verbal,
high-level functions such as visuospatial processing
(Badzakova-Trajkov et al., 2010; Cai et al., 2013; Cochet,
2016; Labache et al., 2024; Serrien & O’Regan, 2022;
Zago et al., 2016). Our observation that left hemisphere
regions in Cluster 2 gain functional specialization with
age while right hemisphere-dominated Cluster 1 becomes
more bilateral supports this interdependent view. It also
echoes prior findings that reduced language lateralization
is linked to diminished performance in both linguistic and
non-linguistic domains (Mellet et al., 2014). This may
reflect a breakdown in the fine-tuned functional segrega-
tion necessary for optimal cognitive efficiency. Further-
more, control networks —crucial for managing interactions
across these cognitive domains—undergo significant
reconfigurations with age (Baciu et al., 2021; Betzel et al.,
2014; Doucet et al., 2021; He et al., 2013; Mowinckel
et al., 2012; Roger et al., 2022). Our findings may thus
reflect an age-related shift in the equilibrium of inter-
network coordination, particularly along the cortical gra-
dient that spans from heteromodal to unimodal systems
(Gonzalez Alam et al., 2022). These large-scale reconfig-
urations are likely constrained by underlying molecular
and cellular asymmetries—such as lateralized neu-
rotransmitter receptor distributions and mitochondrial
profiles—that support functional hemispheric specializa-
tion (Labache et al.,, 2025). Investigating how these
network-level rebalancings relate to functional special-
ization in aging may yield key insights into both the plas-
ticity and vulnerability of the aging brain.

While functional connectivity gradients offer a parsi-
monious framework to capture macroscale cortical orga-
nization and have shown strong correspondence with
known functional hierarchies (Bethlehem et al., 2020;
Margulies et al., 2016), they should be interpreted cau-
tiously as non-causal indicators of cognitive architecture.
As recently pointed out (Herbet & Duffau, 2020), func-
tional connectivity lacks the causal specificity of tech-
niques such as direct electrostimulation or lesion-based
approaches, and may not straightforwardly reflect the
underlying cognitive processes. In this context, our use
of the principal gradient aims to describe large-scale
shifts in functional integration across hemispheres rather
than to assign direct cognitive functions to specific
regions. These gradient-derived metrics are best viewed
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as descriptive tools that complement (Labache, Ge,
et al., 2023), rather than replace, task-based or causal
mapping approaches.

The human brain typically exhibits marked left-right
asymmetries, especially in perisylvian regions involved in
language. While genetics play a role in shaping these
asymmetries, their heritability appears limited (under
30% in adults; (Kong et al., 2018; Sha et al., 2021)), sug-
gesting a major influence of environmental and experien-
tial factors. Our results, showing a shift toward greater
leftward asymmetry in multimodal language-and-memory
regions (Cluster 2) and a bilateralization of classically left-
lateralized regions (Cluster 1), may reflect such long-term
environmental shaping, especially from midlife onward.
This supports a two-phase developmental model: an
early, genetically guided trajectory followed by a pro-
longed experience-sensitive period in heteromodal
regions (Dong et al., 2024; Labache, Ge, et al., 2023).
These age-related shifts in asymmetry may thus be mod-
ulated by midlife experiences, lifestyle, and sensory
inputs, particularly hearing. Recent evidence, however,
suggests that the relationship between hearing loss and
dementia may be indirect, potentially mediated by
reduced social engagement rather than representing a
direct causal link (Ishak et al., 2025; Sarant et al., 2023).
Age-related sensory degradation remains a plausible
contributor to cortical reorganization, as supported by
observed functional changes in the auditory cortex during
aging (Huang et al., 2023; Profant et al., 2015; Schulte
et al., 2020). Sensory degradation, such as age-related
hearing loss, is known to drive neural reconfigurations
(Huang et al., 2023; Schulte et al., 2020), and has been
identified as a major modifiable risk factor for dementia
(Livingston et al., 2020). Given the coupling between sen-
sory input and functional asymmetry (Hesling et al., 2019;
Hugdahl & Westerhausen, 2016; Van der Haegen et al.,
2016), our findings underscore the need to investigate
how bottom-up sensory factors might interact with age-
related cortical reorganization, potentially contributing to
the dual mechanism of hemispheric change we report.

Several methodological considerations and potential
biases require discussion. Our study statistically con-
trolled for gender, and prior work has highlighted gender-
based disparities in language-related functional
connectivity (Roger et al., 2022) and hemispheric asym-
metries (Liang et al., 2021). However, inter-individual vari-
ability in network organization may exceed these
group-level effects. Future research should, therefore,
adopt subject-specific, data-driven approaches to iden-
tify language networks, as advocated by Fedorenko et al.
(2010), to account for heterogeneity in lateralization pat-
terns, rather than assuming a uniform network architec-
ture across individuals. This will be particularly important
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in aging populations, where both individual variability and
sex-related effects may interact and shape the trajecto-
ries of hemispheric specialization. Moreover, our study
predominantly included participants from WEIRD (West-
ern, Educated, Industrialized, Rich, and Democratic)
societies. Considering that most of the global population
does not fit within this category (Henrich et al., 2010), it
would be beneficial to replicate these findings in more
diverse populations, considering the importance of cul-
tural diversity in research. Resting-state functional MRI
has gained popularity due to its strong association with
task-based fMRI activations (Cole et al., 2014, 2016) and
ease of acquisition, rendering it a valuable proxy for cap-
turing functional neuronal processes. Nevertheless, the
strength of hemispheric specialization for language
depends on multiple factors, particularly the nature of the
task (Bradshaw et al., 2017; Labache et al., 2019). Hence,
conducting an additional study encompassing a diverse
array of language-related functional tasks is essential to
validate the consistency of the trends observed in our
resting-state functional data. Open fMRI databases ded-
icated to language, such as InLang (Roger et al., 2022),
could facilitate such investigations. However, the data-
bases available to date only sometimes include a wide
age range, which could limit insights into older adults.
Finally, longitudinal data are imperative for providing con-
clusive evidence regarding evolutionary trajectories
throughout the lifespan and their cognitive implications.
The STAC-r model (revised Scaffolding Theory of Aging
and Cognition model) emphasizes the importance of
examining cognitive changes within individuals
(Reuter-Lorenz & Park, 2014). This approach helps distin-
guish between mechanisms that maintain brain integrity
and compensatory processes. Both mechanisms are
crucial for preserving cognition in older adults, as noted
by Reuter-Lorenz and Park (2014). However, the current
scarcity of extensive longitudinal cohorts, spanning both
older and younger adults, hinders the identification of
features predictive of future brain function and cognitive
preservation (Doucet et al., 2022). It would also be import-
ant to extend the study to cohorts with mild cognitive
impairment (MCI) and related conditions, which is crucial
for assessing the specificity of the observed effects and
discerning trends across different conditions.

In summary, this study provides novel evidence that
age-related changes in hemispheric specialization for
language follow a dual mechanism: a shift toward
increased leftward asymmetry in multimodal language-
and-memory regions, and a simultaneous bilateralization
of classically left-lateralized regions. By integrating func-
tional gradients, structural asymmetries, and behavioral
measures across a large adult lifespan sample, our find-
ings reveal how aging reshapes the brain’s intrinsic lan-
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guage architecture in ways that are linked to cognitive
performance. These insights refine current models of
cognitive aging, highlight the importance of midlife tran-
sitions, and lay groundwork for personalized approaches
to language-based interventions in aging populations.

DATA AND CODE AVAILABILITY

The CamCAN dataset is available upon request through
the Cambridge Centre for Ageing and Neuroscience
(CamCAN) website (Shafto et al., 2014; Taylor et al.,
2017): https://www.cam-can.org. Access requires com-
pletion of a data access application, which includes
agreeing to the CamCAN data usage policies and provid-
ing a brief description of the intended research purpose.
Further details can be found at: https://camcan-archive
.mrc-cbu.cam.ac.uk/dataaccess/. The Omaha dataset
(NE, USA) includes de-identified data and is available
upon request to G. E. Doucet (gaelle.doucet@boystown.
org). The Grenoble dataset (France) is available upon
request to M. Baciu (monica.baciu@univ-grenoble-alpes.
fr). Access requires prior approval from the local institu-
tional review board (IRB), completion of a Data Use
Agreement, and submission of a brief description of the
intended use, along with evidence of ethical approval.

The atlas and the code used to produce the results and
visualizations can be found here (Labache, Roger, et al.,
2023): https://github.com/loiclabache/RogerLabache_2023
_LanguAging.
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